Interoffice Memorandum
October 29, 2018

TO:	Mayor Teresa Jacobs and Board of County Commissioners FROM: SUBJECT: Raymond E. Hanson, P. E., Director Utilities Department
	BCC AGENDA ITEM - Consent Agenda November 13, 2018 BCC Meeting First Amendment to Reedy Creek Improvement District/Orange County Amended and Restated Water, Wastewater, and Reclaimed Water Service
Territorial Agreement; Interlocal Agreement between Reedy Creek Improvement District and Orange County for Delivery of Wholesale Water	
Services to the Flamingo Crossings Development Contact Person: Andres Salcedo, P.E., Assistant Director Atilities Department	
	407-254-9719

Reedy Creek Improvement District (RCID) has requested Orange County (the "County") to amend the Reedy Creek Improvement District/Orange County Amended and Restated Water, Wastewater, and Reclaimed Water Service Territorial Agreement (the "Territorial Agreement"), dated September 30, 2008. This first amendment would revise the potable water, wastewater, and reclaimed water service territorial boundary between RCID and the County to remove parcels FC-1 and FC-2, which are areas inside of FC Ultimate, from the water, wastewater, and reclaimed water territory of RCID and to include those parcels within the territorial jurisdiction of the County.

Contemporaneously with the first amendment to the Territorial Agreement, RCID has requested an interlocal agreement for RCID to provide wholesale water, wastewater, and reclaimed water services ("Water Services") to the County to serve FC Ulitimate until the County initiates Water Services from its utility systems. The interlocal agreement also provides that if, after the County initiates water service to FC Ulimate and the County determines that it needs additional water to address a hydraulic constraint, RCID will provide wholesale water to the County for use by FC Ultimate until such time as the County eliminates the hydraulic constraint, which shall be on or before the $10^{\text {th }}$ anniversary of the effective date of the agreement.

The backup documentation for this item has been delivered under separate cover. It may also be accessed online as part of the eAgenda by clicking here.

The County Attorney's Office staff reviewed this agreement and finds it acceptable. Utilities Department staff recommends approval.

Action Requested: Approval and execution of (1) First Amendment to Reedy Creek Improvement District/Orange County Amended and Restated Water, Wastewater, and Reclaimed Water Service Territorial Agreement and (2) Interlocal Agreement between Reedy Creek Improvement District and Orange County for delivery of wholesale water services to the Flamingo Crossings Development.

District 1.

FIRST AMENDMENT

TO

REEDY CREEK IMPROVEMENT DISTRICT/ORANGE COUNTY AMENDED AND RESTATED WATER, WASTEWATER, AND RECLAIMED WATER SERVICE TERRITORIAL AGREEMENT

Abstract

THIS FIRST AMENDMENT TO THE REEDY CREEK IMPROVEMENT DISTRICT/ORANGE COUNTY AMENDED AND RESTATED WATER, WASTEWATER, AND RECLAIMED WATER SERVICE TERRITORIAL AGREEMENT (this "First Amendment"), is made and entered into on the date of later execution below, by ańd between REEDY CREEK IMPROVEMENT DISTRICT, a public corporation and public body corporate and politic of the State of Florida, whose address is P.O. Box 10170, Lake Buena Vista, Florida 32830 (hereinafter called "RCID"), and ORANGE COUNTY, a charter county and political subdivision of the State of Florida (hereinafter called the "County"), whose address is 201 South Rosalind Avenue, Orlando, Florida 32801.

RECITALS

WHEREAS, RCID and the County entered into that agreement entitled "Reedy Creek Improvement District/Orange County Amended and Restated Water, Wastewater, and Reclaimed Water Service Territorial Agreement" (the "Agreement"), dated September 30, 2008; and

WHEREAS, the Agreement defines the potable water, wastewater and reclaimed water service territorial boundary between RCID and the County and describes the areas referred to therein as "RCID's Territorial Area" and the "Adjacent Territorial Area;" and

WHEREAS, RCID and the County desire to modify and alter RCID's Territorial Area, as that term is defined in the Agreement, in accordance with the provisions set forth herein; and

WHEREAS, Section 5 of the Agreement provides that RCID and the County may alter the RCID Territorial Area by mutual consent by the preparation of a document fully describing such alteration, which document is approved by the governing boards of each party and provides the legal description and map of the proposed new RCID Territorial Area; and

WHEREAS, this First Amendment fulfills the requirements set forth in Section

5 of the Agreement.
NOW, THEREFORE, in consideration of the foregoing premises, and for other good and valuable consideration, the parties agree as follows:

1. The recitals set forth above are true and correct and by this reference are incorporated into this First Amendment.
2. Exhibit "A" to the Agreement is hereby replaced with Exhibit "A1," which is attached hereto and incorporated by this reference into the Agreement.
3. Except as modified by this First Amendment, the terms and provisions of the Agreement shall remain unchanged and in full force and effect.
[SIGNATURES APPEAR ON THE FOLLOWING PAGES]

IN WITNESS WHEREOF, RCID and the County have caused this First Amendment to be executed by their duly designated representatives as of the date and year indicated below.
"RCID"
REEDY CREEK IMPROVEMENT DISTRICT

John H. Classe, Jr.
District Administrator
Date: \qquad

"COUNTY"

ORANGE COUNTY
By: Board of County Commissioners
By: Hin dalcaan fa

Date: \qquad

ATTEST: Phil Diamond, CPA, Orange County Comptroller as Clerk to the Board of County Commissioners

DESCRIPTION OF
 REEDY CREEK IMPROVEMENT DISTRICT WATER AND WASTE WATER TERRITORIAL AREA IN ORANGE COUNTY

Begin at the Southwest corner of the Northwest $1 / 4$ of the Southwest $1 / 4$ of Section 6, Township 24 South, Range 28 Eost run $N 00^{\circ} 00^{\prime} 22^{\prime \prime} E, 1327.43$ feet along the West line of Section 5 to the West $1 / 4$ corner thereaf; thence N $89^{\circ} 27^{\prime} 45^{\prime \prime} \mathrm{E}, 1997.50$ feet along the North line of the South half of Section 6 , to the Southwest corner of the East $1 / 2$ of the Southeast $1 / 4$ of the Northwest $1 / 4$ of Section 6, thence $N 00^{\circ} 20^{\prime} 35^{\prime \prime} \mathrm{W}, 1154.75$ feet along the West line of the East $1 / 2$ of the Southeast $1 / 4$ of the Northwest $1 / 4$ of Section 6; thence $N 89.38^{\prime} 50^{\prime \prime}$ E, 663.64 feet along a line that is 165.00 feet South of and parallel to the North line of the Southeast $1 / 4$ of the Northwest $1 / 4$ of Section 6 ; thence $N 8911^{\prime} 34^{\prime \prime}$ E, 148.62 feet $+/-$ along a line parallel to and 165.00 feet South of the North line of the Southwest $1 / 4$ of the Northeast $1 / 4$ of Section 6 to a point on the Westerly shore line of Lake Mable; thence meander the shore line of Lake Mable in a Southerly direction, to a point on the South line of Section 6 and the North line of Section 7, Township 24 South, Range 28 East, said point being $S 16^{\circ} 20^{\prime \prime} 10^{\prime \prime} W^{\prime} 3981.97$ feet more or less from the previously described point, and also lying $N 89^{\circ} 31^{\prime} 17^{\prime \prime} \mathrm{E}, 1683.05$ feet from the Southwest corner of Section 6 ; thence continue along the share line of Lake Mable in a Southeasterly and Northeosterly direction across the North $1 / 4$ of Section 7, to the North line of Section 7 and the South line of Section 6, Township 24 South, Range 28 East, said point being $N 89^{\circ} 31^{\prime} 17^{\prime \prime} \mathrm{E}$, along the North section line of Section $7,1381.64$ feet from the previously described point and lying $S 89^{\circ} 31^{\prime \prime} 17^{\prime \prime} \mathrm{W}, 2304.35$ feet from the Northeast corner of Section 7; thence continue to meander the shore line of Lake Mable in a Northeasterly direction across the Southeast $1 / 4$ of Section 6, Township 24 South, Range 28 East to a point on soid shoreline which is intersected by the North line of the South half of the Southeast $1 / 4$ of Section 6, said point being $N 25^{\circ} 14^{\prime} 10^{\prime \prime} \mathrm{E}, 1475.82$ feet from the previously described point; thence $N 89^{\circ} 29^{\prime} 30^{\prime \prime} \mathrm{E}$, along said North line of the South half of the Southeast $1 / 4$ of Section 6, 1679.89 feet to the East section line thereof; thence $S 00^{\circ} 12^{\prime} 20^{\prime \prime}$ W. 1330.62 feet along the East line of Section 6 to the Southeast comer of Section 6 and the Northwest corner of Section 8, Township 24 South, Range 28 East; thence $N 89^{\circ} 21^{\prime} 03^{\prime \prime}$ E along the Narth line of Section 8, 191.58 feet more or less to a point on the West shore line of South Lake; thence meander the shore line of South Lake in a Southwesterly, Southeasterly and Northeasterly direction to a point where the shore line of South Lake intersects the East line of the West half of the West half of Section B; said point being $525^{\circ} 17^{\prime} 13^{\prime \prime}$ E, 2679.01 feet more or less from the previously described point; thence $500^{\circ} 13^{\prime} 59^{\prime \prime} \mathrm{W}, 221.07$ feet to the Northeast corner of the Northwest $1 / 4$ of the Southwest $1 / 4$ of Section 8 ; thence $S 0006^{\prime} 21^{\prime \prime}$ E along the East line of the West half of the Southwest $1 / 4$ of Section $8,1334.85$ feet to the Southeast corner of the Northwest $1 / 4$ of the Southwest $1 / 4$ of Section 8; thence S $88^{\circ} 48^{\prime} 04^{\prime \prime}$ W, 1111.09 feet to a point of curvature of a curve concave Southeasterly having a radius of 545.08 feet, and a central angle of $81{ }^{\prime} 15^{\prime} 08^{\prime \prime}$; thence run Southwesterly along the arc of said curve. 772.99 feet; to a point of reverse curvature of a curve concave Northerly having a radius of 80.00 feet, and a central angle of $128^{\circ} 43^{\prime} 50^{\prime \prime}$; thence run Westerly along the arc of said curve, 179.74 feet; thence $S 43^{\circ} 40^{\prime} 59^{\prime \prime} E, 16.92$ feet; thence $S 34^{\circ} 38^{\prime} 41^{\prime \prime} \mathrm{E}, 8.13$ feet; thence $S 25^{\circ} 16^{\prime} 40^{\prime \prime} \mathrm{E}, 86.79$ feet; thence $S 28^{\circ} 57^{\prime} 56^{\prime \prime} \mathrm{E}, 106.03$ feet; thence $S 58^{\circ} 01^{\circ} 53^{\prime \prime} \mathrm{E}$, 87.73 feet; thence $N 85^{\circ} 59^{\prime} 29^{\prime \prime} \mathrm{E}, 134.58$ feet to a point of curvature of a curve concove Southerly having a radius of 425.00 feet, and a central angle of $23^{\circ} 29^{\prime} 59^{\prime \prime}$; thence run Easterly along the arc of said curve, 174.31 feet; to a point of compound curvature of a curve concave Southwesterly having a radius of 15.00 feet, and a central angle of $46^{\circ} 20^{\prime} 48^{\prime \prime}$; thence run Southeasterly along the arc of said curve, 12.13 feet; to a point of compound curvature of a curve concave Westerly having a radius of 425.00 feet, and a central angle of $16^{\circ} 33^{\prime} 54^{\prime \prime}$; thence run Southerly along the arc of said curve, 122.87 feet; to a point of compound curvature of a curve concave Westerly having a radius of 25.00 feet, and a central angle of $51^{\prime} 32^{\prime} 25^{\prime \prime}$; thence run Southerly along the arc of said curve, 22.49 feet; thence S $43^{\circ} 56^{\prime} 36^{\prime \prime} \mathrm{W}, 91.06$ feet; thence $S 64^{\circ} 40^{\prime} 37^{\prime \prime} \mathrm{W}, 105.25$ feet; thence $S 40^{\circ} 45^{\prime} 32^{\prime \prime} \mathrm{W}, 117.42$ feet; thence $S 13.26^{\prime} 04^{\prime \prime} \mathrm{W}$, 97.39 feet; thence $S^{\prime} 42^{\circ} 14^{\prime \prime} 20^{\prime \prime} \mathrm{W}$, 133.97 feet; thence $S 68^{\circ} 59^{\prime} 11^{\prime \prime} \mathrm{W}, 89.71$ feet; thence $S 28^{\circ} 50^{\prime \prime} 44^{\prime \prime} \mathrm{W}$, 77.77 feet; thence $S 14^{\circ} 52^{\prime} 47^{\prime \prime} \mathrm{W}, 88.32$ feet; thence $S ~ 01^{\circ} 59^{\prime} 29^{\prime \prime} \mathrm{E}, 106.28$ feet; thence $S 24^{\circ} 42^{\prime} 46^{\prime \prime} \mathrm{W}, 241.59$ feet; thence S $36^{\circ} 55^{\circ} 50^{\prime \prime} \mathrm{W}, 126.64$ feet; thence $524^{\circ} 03^{\prime} 44^{\prime \prime} \mathrm{W}, 71.01$ feet to a point of curvature of a curve concove Northwesterly having a radius of 25.00 feet, and a central angle of $40^{\circ} 55^{\prime} 45^{\prime \prime}$; thence run Southwesterly along the arc of said curve, 17.86 feet; thence $S 64^{\circ} 59^{\prime} 30^{\prime \prime \prime} \mathrm{W}, 91.68$ feet to a point of curvature of a curve concave Northerly having a radius of 25.00 feet, and a central angle of $46^{\prime} 29^{\prime} 32^{\prime \prime}$; thence run Westerly along the arc of said curve, 20.29 feet; thence N $68^{\circ} 30^{\prime} 58^{\prime \prime} \mathrm{W}, 131.37$ feet; thence $N 34^{\circ} 57^{\prime} 28^{n} \mathrm{~W}, 145.43$ feet; thence $N 10^{\circ} 44^{\circ} 04^{\prime \prime} \mathrm{W}, 144.09$ feet; thence $N 10.34^{\prime} 18^{\prime \prime} \mathrm{E}$, 129.55 feet; thence $N .44^{\circ} 03^{\prime} 35^{\prime \prime} \mathrm{E}, 129.67$ feet; thence $N 86^{\circ} 35^{\prime} 32^{\prime \prime}$ E, 100.03 feet; thence $N .62^{\circ} 48^{\prime} 18^{\circ}$ E, 100.08 feet; CONTINUED ON SHEET 2

SURVEYNE AND MAPPING DEPARTMENT P.O.B. 10000 LAKE BUENA VSTA F. 32830-1000 PHONE (407)560-7118 FAX (407)560-7869

WLING AREA $D I S N E Y$ OVERALL	$\begin{aligned} & \text { DATE } \\ & 12 / 07 / 17 \\ & \hline \end{aligned}$
$\stackrel{\text { Proget NaME }}{\text { RCID }}$ WATER/WASTE WATER TERRITORY	SCAIE
SURVEY TTPE SKETCH OF DESCRIPTION	$\begin{aligned} & \text { DRAMN BY: } \\ & \text { JLG } \end{aligned}$
${ }_{\text {COMMENTS }}^{\text {EXHIBIT }}$ A1, SHEET 1 OF 31 SHEETS	$\begin{aligned} & \text { FILDAME: } \\ & 10 J G 096 R 2 \end{aligned}$

CONTINUED FROM SHEET 1

thence $N 58^{\prime} 16^{\prime} 14^{\prime \prime} \mathrm{E}, 95.99$ feet; thence $N 15^{\circ} 01^{\prime} 47^{\prime \prime} \mathrm{E}, 86.03$ feet; thence $N .14^{\circ} 30^{\prime} 32^{\prime \prime} \mathrm{W}, 104.94$ feet; thence N $03^{\circ} 06^{\prime} 23^{\prime \prime} \mathrm{W}, 111.09$ feet; thence $N 07.32^{\prime} 42^{\prime \prime} \mathrm{E}, 68.01$ feet; thence $N 15^{\prime} 14^{\prime} 13^{\prime \prime} \mathrm{W}, 80.67$ feet; thence N 87.12'48" W , 40.11 feet; thence $S 77^{\circ} 42^{\prime} 57^{\prime \prime} \mathrm{W}$, 84.88 feet; thence $574^{\circ} 44^{\prime} 47^{\prime \prime} \mathrm{W}, 66.79$ feet; thence $S 35^{\circ} 20^{\prime} 27^{\prime \prime} \mathrm{W}, 90.33$ feet; thence $S 22^{\circ} 58^{\prime} 13^{\prime \prime} \mathrm{W}, 87.94$ feet; thence $S 20^{\circ} 05^{\prime} 22^{\prime \prime} \mathrm{W}, 168.18$ feet; thence $S 65^{\circ} 39^{\prime} 23^{\prime \prime} \mathrm{W}$, 108.46 feet; thence N $79^{\circ} 02^{\prime} 16^{\prime \prime} \mathrm{W}, 146.86$ feet; thence $S^{\prime} 44^{\circ} 41^{\prime} 24^{\prime \prime} \mathrm{W}, 85.24$ feet; thence $S 66^{\circ} 58^{\prime} 59^{\prime \prime} \mathrm{W}, 80.82$ feet; thence $\mathrm{N} 89^{\circ} 03^{\prime} 00^{\prime \prime} \mathrm{W}$, 96.88 feet; thence $S 8478^{\prime} 13^{\prime \prime} W, 51.79$ feet; thence $S 77.56^{\circ} 53^{\prime \prime} \mathrm{W}, 116.91$ feet; thence $S 70^{\circ} 14^{\prime} 00^{\prime \prime} \mathrm{W}$, 84.26 feet; thence $N 63^{\circ} 52^{\prime} 48^{\prime \prime} \mathrm{W}, 163.26$ feet; thence $N 71^{\circ} 49^{\prime} 57^{\prime \prime} \mathrm{W}, 91.32$ feet; thence $N 560^{\circ} 38^{\prime} 48^{\prime \prime} \mathrm{W}, 106.72$ feet; thence. N $37.38^{\prime} 37^{\prime \prime} \mathrm{W}, 96.72$ feet; thence $N 69^{\circ} 48^{\prime} 38^{\prime \prime} \mathrm{W}, 85.22$ feet; thence $N 8515^{\prime} 14^{\prime \prime} \mathrm{W}, 95.72$ feet; thence $N 76.56^{\prime} 11^{\prime \prime} \mathrm{W}$, 104.56 feet; thence $S 28^{\circ} 55^{\prime} 14^{\prime \prime} \mathrm{W}, 152.43$ feet; thence $S 13^{\circ} 45^{\prime} 44^{\prime \prime} \mathrm{E}, 47.73$ feet to a point of curvature of a curve concave Westerly having a radius of 75.00 feet, and a central angle of $30.06^{\prime} 13^{\prime \prime}$; thence run Southerly along the arc of said curve, 39.41 feet; to a point of reverse curvature of a curve concave Northeasterly having a radius of 45.00 feet, and a central angle of $99^{\circ} 54^{\prime \prime} 55^{\prime \prime}$; thence run Southeasterly along the are of said curve, 78.47 feet; to a point of reverse curvature of a curve concave Southwesterly having a radius of 250.00 feet, and a central angle of $55^{\circ} 31^{\prime \prime} 16^{\prime \prime}$; thence run Southeasterly along the arc of said curve, 242.26 feet; thence $S 28^{\circ} 03^{1} 11^{\prime \prime} \mathrm{E}, 95.35$ feet to a point of curvature of a curve concave Westerly having a radius of 125.00 feet, and a central angle of $59^{\circ} 41^{\circ} 01^{\circ}$; thence run Southerly alang the arc of said curve, 130.21 feet; thence $S 31^{\circ} 37^{\prime} 50^{\prime \prime} \mathrm{W}, 165.37$ feet; thence $S 51^{\circ} 01^{\prime \prime} 41^{\prime \prime} \mathrm{E}$, 83.54 feet to a point on a non-tangent curve concave Southeasterly having a radius of 675.49 feet, and a central angle of $29^{\circ} 43^{\prime} 07^{\prime \prime}$; thence from a tangent bearing of $N 50^{\circ} 17^{\prime} 44^{\prime \prime} \mathrm{E}$ run Northeasterly along the arc of said curve, 350.89 feet; thence $S 35^{\circ} 59^{\prime} 30^{\prime \prime} \mathrm{E}, 246.14$ feet; thence $S 55^{\circ} 37^{\prime} 13^{\prime \prime} \mathrm{E}, 316.45$ feet; thence $S 68^{\circ} 44^{\circ} 46^{\prime \prime} \mathrm{E}, 336.44$ feet to a point on a non-tangent curve concave Southerly having a radius of 399.38 feet, and a central angle of $090^{\circ} 53^{\prime} 41^{\prime \prime}$; thence from a tangent bearing of $N 79^{\prime} 13^{\prime} 56^{\prime \prime} \mathrm{E}$ run Easterly along the arc of said curve, 68.97 feet; to a paint of reverse curvature of a curve concave Northerly having a radius of 137.63 feet, and a central angle of $14^{\circ} 21^{\prime \prime} 49^{\prime \prime}$; thence run Easterly along the arc of said curve, 34.50 feet; thence $S 0357^{\prime} 40^{\prime \prime} \mathrm{W}, 60.74$ feet to a point on a non-tangent curve concave Southerly having a radius of 344.38 feet, and a central angle of $04{ }^{\prime} 15^{\prime \prime} 11^{\prime \prime}$; thence from a tangent bearing of $S 86^{\circ} 02^{\prime} 20^{\prime \prime}$ E run Easterly along the arc of said curve, 25.56 feet; to a point of compound curvature of a curve concove Southerly hoving a radius of 132.00 feet, and a central angle of $26.04^{\prime \prime} 01^{\prime \prime}$; thence run Easterly along the arc of said curve, 60.05 feet; to a point on a non-tangent curve concave Southwesterly having a radius of 184.37 feet, and a central angle of $31^{\circ} 44^{\prime} 00^{\prime \prime}$; thence from a tangent bearing of $549^{\circ} 44^{\prime} 21^{\prime \prime} \mathrm{E}$ run Southeasterly along the are of said curve, 102.11 feet; to a point of compound curvature of a curve concave Westerly having a radius of 679.36 feet, and a central angle of $08^{\circ} 51^{\prime \prime} 48^{\prime \prime}$; thence run Southerly alang the arc of said curve, 105.09 feet; to a point of reverse curvature of a curve concave Easterly having a radius of 437.18 feet, and a central angle of $18^{\circ} 37^{\circ} 07^{\prime \prime}$; thence run Southerly along the arc of said curve, 142.06 feet; to a point of compound curvature of a curve concave Northeasterly having a radius of 395.25 feet, and a central angle of $1873^{\prime} 39^{\prime \prime}$; thence run Southeasterly along the are of said curve, 125.74 feet; to a point of reverse curvature of a curve concave Southwesterly having a radius of 645.09 feet, and a central angle of $03^{\prime} 21^{\prime} 33^{\prime \prime}$; thence run Southeasterly along the arc of said curve, 37.82 feet; thence $\mathrm{N} 82^{\prime} 18^{\prime} 14^{\prime \prime} \mathrm{W}$, 71.09 feet; thence $N 51^{\prime} 44^{\prime} 44^{\prime \prime} \mathrm{W}, 65.78$ feet; thence $N 80^{\circ} 24^{\prime} 25^{\prime \prime} \mathrm{W}, 90.39$ feet; thence $548^{\prime} 32^{\prime} 46^{\prime \prime} \mathrm{W}$. 80.93 feet: thence $S 22.55^{\prime} 38^{\prime \prime} \mathrm{W}, 113.12$ feet; thence $S 27{ }^{\prime} 19^{\prime} 16^{\prime \prime} \mathrm{E}, 55.45$ feet; thence $S 18.40^{\prime} 56^{\prime \prime} W_{3}{ }^{\prime} 159.75$ feet; thence S $10.48^{\prime} 30^{\prime \prime} \mathrm{W}, 160.42$ feet to a point of curvature of a curve concave Easterly having a radius of 223.65 feet, and a central angle of $59^{\circ} 02^{\prime} 33^{\prime \prime}$; thence run Southerly along the orc of said curve, 230.47 feet; to a point on the Northerly and Easterly boundary of Tract R, Golden Oak Phase $1 B$ according to the Plat thereof recorded in Plat Book 75, Pages 3 through 15 of the Public Records of Orange County, a non-tangent curve concave Northerly having a radius of 25.00 feet, and a central angle of $64.33^{\circ} 48^{\prime \prime}$; thence from a tangent bearing of $S 49^{\circ} 58^{\prime} 05^{\circ}$ E run Easterly along the are of said curve, 28.17 feet; thence $N 65^{\circ} 28^{\prime} 07^{\prime \prime} \mathrm{E}, 122.36$ feet; thence $N 76.27^{\prime} 23^{\prime \prime} \mathrm{E}, 76.59$ feet to a point of curvature of a curve concave Northwesterly having a radius of 25.00 feet, and a central angle of $25^{\circ} 14^{\prime} 16^{\prime \prime}$; thence run Northeasterly along the arc of said curve, 11.01 feet; thence $S 78.11^{\prime} 38^{\prime \prime} \mathrm{E}, 85.68$ feet to a point on a non-tangent curve concave Easterly having a radius of 1010.00 feet, and a central angle of $07.58^{\prime} 42^{\prime \prime}$; thence from a 'tangent bearing of $S 11^{\circ} 48^{\prime} 22^{\prime \prime} \mathrm{W}$ run Southerly along the are of said curve, 140.64 feet; to a point on a non-tangent curve

CONTINUED ON SHEET 3

CONTINUED FROM SHEET 2

concave Southwesterly having a radius of 25.00 feet, and a central angle of $87 \cdot 13^{\prime} 52^{\prime \prime}$; thence from a tangent bearing of $N 0.49^{\prime} 41^{\prime \prime} \mathrm{E}$ run Northwesterly alang the arc of said curve, 3 B .06 feet; thence $\mathrm{N} 83{ }^{\prime} 24^{\prime} 11^{\prime \prime} \mathrm{W}$, 42.54 feet to a point of curvature of a curve concave Southerly having a radius of 221.37 feet, and a central angle af $29^{\circ} 07^{\prime} 38^{\prime \prime}$; thence run Westerly along the arc of said curve, 112.54 feet; to a point of reverse curvature of a curve concave Northerly having a radius of 132.76 feet, and a central angle of $4816^{\prime} 12^{\prime \prime}$; thence run Westerly along the arc of said curve, 111.85 feet; to a point on a non-tangent curve concave Northeasterly having a radius of 234.18 feet, and a central angle of $14^{\circ} 51^{\prime} 36^{\prime \prime}$; thence from a tangent bearing of $N 64.15^{\prime} 37^{\prime \prime} \mathrm{W}$ run Northwesterly along the arc of said curve, 60.74 feet; thence $S 24^{\circ} 23^{\prime} 32^{\prime \prime} \mathrm{E}, 34.06$ feet; thence $S 184^{\circ} 09^{\prime \prime} \mathrm{E}, 78.70$ feet to a point on a non-tangent curve concave Northwesterly having a radius of 25.00 feet, and a central angle of $115^{\circ} 40^{\circ} 49^{\prime \prime}$; thence from a tangent bearing of $S 170^{\circ} 50^{\prime 2} 29^{\prime \prime} \mathrm{E}$ run Southwesterly along the arc of said curve, 50.48 feet; thence $\mathrm{N} 82^{\circ} 09^{\prime} 40^{\prime \prime} \mathrm{W}, 26.47$ feet; thence $S 26^{\circ} 43^{\prime} 01^{\prime \prime} \mathrm{W}, 107.99$ feet; thence $S 13^{\circ} 53^{\prime} 13^{\prime \prime} \mathrm{W}, 84.71$ feet; thence $S 20^{\circ} 06^{\prime} 37^{\prime \prime} \mathrm{W}$, 86.21 feet; thence S $22^{\circ} 42^{\prime} 17^{\prime \prime} \mathrm{W}, 90.27$ feet; thence $S 48^{\prime} 33^{\prime} 38^{\prime \prime} \mathrm{W}, 93.96$ feet; thence $S 51^{\circ} 48^{\prime} 05^{\prime \prime} \mathrm{W}, 58.47$ feet; thence $S 70^{\circ} 41^{\circ} 52^{\prime \prime} \mathrm{W}$, 98.39 feet; thence $S 75^{\circ} 48^{\prime} 30^{\prime \prime} \mathrm{W}, 82.70$ feet; thence $N 82^{\circ} 22^{\prime} 12^{\prime \prime} \mathrm{W}, 18.57$ feet; thence $S 59^{\circ} 48^{\prime} 12^{\prime \prime} \mathrm{W}, 61.99$ feet; thence $S 23^{\circ} 48^{\circ} 42^{\prime \prime} \mathrm{W}, 31.41$ feet; thence $S 21^{\circ} 34^{\prime \prime} 58^{\prime \prime} \mathrm{E}, 112.96$ feet; thence $S 25^{\circ} 04^{\circ} 56^{\prime \prime} \mathrm{E}$, 80.36 feet; thence S $06.58^{\prime \prime} 19^{\prime \prime} \mathrm{E}, 51.79$ feet to a point of curvature of a curve concave Westerly having a radius of 25.00 feet, and a central angle of $54^{\prime \prime} 17^{\prime} 13^{\prime \prime}$; thence run Southerly along the arc of said curve, 23.69 feet; thence $S 47{ }^{\prime} 18^{\prime} 54^{\prime \prime} \mathrm{W}, 37.10$ feet: thence $S 03^{\prime} 48^{\prime} 45^{\prime \prime} \mathrm{E}, 24.29$ feet to a point of curvature of a curve concave Northwesterly having a radius of 25.00 feet, and a central angle of $79^{\prime \prime} 16^{\prime} 52^{\prime \prime}$; thence run Southwesterly alang the arc of said curve, 34.59 feet; thence $S 75^{\circ} 28^{\prime} 07^{\prime \prime} \mathrm{W}, 70.19$ feet to a point of curvature of a curve concave Northerly having a radius of 25.00 feet, and a central angle of $41^{\prime} 16^{\prime} 24^{\prime \prime}$; thence run Westerly along the arc of said curve, 18.01 feet; thence $N 63^{\circ} 15^{\prime} 30^{\prime \prime} \mathrm{W}, 63.09$ feet to a point on the Easterly right-of-way of RCID canal L-105 as described in Official Records Book 1896, Page 232 of the Public Records of this County, and a non-tangent curve concave Easterly having a radius of 1505.50 feet, and a central angle of $37^{\circ} 08^{\prime} 46^{\prime \prime}$; thence from a tangent bearing of $503^{\circ} 51^{\prime} 20^{\prime \prime} \mathrm{E}$ run Southerly along the arc of said curve and right-of-way, 976.05 feet; thence continue along said right-af-way $S 4^{\circ} 00^{\prime} 06^{\prime \prime} E, 193.39$ feet; thence S $48^{\circ} 59^{\prime} 54^{\prime \prime}$ W, 100.00 feet to a point on the westerly right-af-way of said Canal; thence departing said Canal run, N $87{ }^{\circ} 15^{\prime} 41^{\prime \prime} \mathrm{W}, 130.57$ feet; thence $N 63^{\circ} 21^{\prime} 34^{\circ} \mathrm{W}, 33.90$ feet; thence $\mathrm{N} 81^{\circ} 08^{\prime} 52^{\prime \prime} \mathrm{W}, 154.09$ feet; thence $N 39^{\circ} 33^{\prime} 00^{\prime \prime} \mathrm{W}$, 38.53 feet; thence $N 28^{\circ} 54^{\prime} 14^{\prime \prime} \mathrm{W}, 86.79$ feet; thence $N 28^{\circ} 30^{\circ} 43^{\prime \prime} \mathrm{W}, 101.63$ feet; thence $N .32^{\circ} 36^{\circ} 46^{*} \mathrm{~W}, 77.00$ feet; thence $N 39^{\circ} 30^{\prime} 36^{\prime \prime}$ W, 98.30 feet to a point of curvature of a curve concave Easterly having a radius of 25.00 feet, and a central angle of $3794^{\prime} 40^{\prime \prime}$; thence run Northerly along the arc of said curve, 16.25 feet; thence $\mathrm{N} 02.15^{\prime} 56^{\prime \prime} \mathrm{W}$, 56.50 feet; thence $N 39^{\circ} 36^{\prime} 59^{\prime \prime}$ W, 135.27 feet; thence $N 855^{\circ} 04^{\prime} 00^{\prime \prime} \mathrm{W}, 67.65$ feet to a point of curvature of a curve concave Northeasterly having a radius of 25.00 feet, and a central angle of $46^{\circ} 40^{\prime} 29^{\prime \prime}$; thence run Northwesterly along the arc of said curve, 20.37 feet; thence $N 38^{\circ} 23^{\prime} 30^{\prime \prime} \mathrm{W}, 64.62$ feet; thence $\mathrm{N} 64^{\circ} 16^{\prime} 04^{\prime \prime} \mathrm{W}, 16.33$ feet to a point of curvature of a curve concave Northeasterly having a radius of 25.00 feet, and a central angle of $58^{\circ} 38^{\prime} 45^{\prime \prime}$; thence run Northwesterly along the arc of said curve, 25.59 feet; thence $N 05.37^{\prime} 20^{\circ} \mathrm{W}, 20.54$ feet; thence $N 44^{\circ} 31^{\circ} 28^{\prime \prime} \mathrm{W}, 62.56$ feet; thence $523^{\circ} 42^{\prime} 54^{\prime \prime} \mathrm{W}, 95.95$ feet to a paint of curvature of a curve concave Northwesterly having a radius of 25.00 feet, and a central angle of $84^{\circ} 46^{\prime} 10^{\prime \prime}$; thence run Southwesterly along the arc of said curve, 36.99 feet; thence $N 71^{\circ} 30^{\prime} 56^{\prime \prime} \mathrm{W}, 65.59$ feet; thence $N 67^{\circ} 45^{\circ} 46^{\prime \prime} \mathrm{W}, 71.42$ feet; thence $\mathrm{N} 47^{\circ} 09^{\prime} 12^{\prime \prime} \mathrm{W}, 129.61$ feet; thence $N 28^{\circ} 09^{\prime} 10^{\prime \prime}$ W, 67.04 feet to a point of curvature of a curve concave Easterly having a radius of 25.00 feet, and a central angle of $58.17^{\prime} 03^{\prime \prime}$; thence run Northerly along the arc of said curve, 25.43 feet; thence $N 30^{\circ} 07^{\prime} 52^{\prime \prime} E, 66.18$ feet; thence N $41^{\circ} 27^{\prime} 39^{\prime \prime} \mathrm{E}, 82.62$ feet; thence $N 28^{\circ} 03^{\prime} 16^{\prime \prime} \mathrm{E}, 61.53$ feet; thence $N 21^{\circ} 03^{\prime} 09^{\prime \prime} \mathrm{W}, 47.93$ feet; thence $N 17.13^{\prime} 11^{\prime \prime} \mathrm{W}$, 99.26 feet; thence $N 00^{\circ} 32^{\prime} 57^{\prime \prime} E, 48.45$ feet; thence $N 121^{\circ} 21^{\prime} 10^{\prime \prime} E, 151.79$ feet; thence $N 23^{\circ} 46^{\prime} 35^{\prime \prime} E$, 109.94 feet; thence $N 39^{\circ} 26^{\prime} 51^{\prime \prime} E, 91.52$ feet; thence $N 17^{\circ} 00^{\prime} 45^{\prime \prime} E, 45.16$ feet; thence $N 34^{\circ} 56^{\prime} 26^{\prime \prime} W$, 27.03 feet; thence N $26^{\circ} 29^{\prime} 23^{\prime \prime}$ W, 104.81 feet; thence $S 48^{\circ} 40^{\prime} 54^{\prime \prime}$ W, 30.14 feet to a point on a non-tangent curve concave Southerly hoving a radius of 7.86 feet, and a central angle of $78^{\circ} 20^{\prime} 37^{\prime \prime}$; thence from a tangent bearing of $\mathrm{N} 28^{\circ} 56^{\prime} \mathrm{O} 3^{\prime \prime} \mathrm{W}$ run Westerly along the arc of said curve, 10.75 feet; to a point of compound curvature of a curve concave Southeasterly having a radius of 19.64 feet, and a central angle of $36.52^{\prime} 37^{\prime \prime}$; thence run Southwesterly along the arc of said curve, 12.64 feet; to a point of compound curvature of a curve concave Easterly having a radius of 3.95 feet, and a central angle of $74^{\prime 2} 25^{\prime} 35^{\prime \prime}$; thence run Southerly along the arc of said curve, 5.13 feet; thence $S^{\prime \prime} 38^{\prime} 34^{\circ} 51^{\prime \prime} E$, 13.88 feet; CONTINUED ON SHEET:4

	SURVEYING AND MAPPING DEPARTMENT P.O.B 10000 LAKE BUENA VISTA F. 32830-1000 PHONE (407)560-7118 FAX (407)560-7869				$\begin{aligned} & \hline \text { DATE: } \\ & 12 / 07 / 17 \\ & \hline \end{aligned}$
		PRGECT NAME RCID WATER/WASTE WATER TERRITORY			SCALE
		SURVEYTPE			$\begin{aligned} & \text { DRAWN BY: } \\ & \text { JLG } \end{aligned}$
		COMMENTS EXHIAIT A1 SHEET 3 OF 31 SHEETS			$\begin{aligned} & \text { fLDVAME: } \\ & 10 \mathrm{JG09096R2} \end{aligned}$

CONTINUED FROM SHEET 3

thence $S 51^{\circ} 58^{\prime} 30^{\prime \prime} \mathrm{W}, 145.54$ feet; thence $N 37.57^{\prime} 09^{\prime \prime} \mathrm{W}, 16.70$ feet to a point on a non-tangent curve concave Northeasterly having a radius of 1080.42 feet, and a central angle of $20.21^{\prime} 16^{\prime \prime}$; thence from a tangent bearing of N $48^{\circ} 06^{\prime} 54^{\prime \prime} \mathrm{W}$ run Northwesterly along the arc of said curve, 383.82 feet; thence $N 37.56^{\prime} 18^{\prime \prime}$ W, 17.87 feet; thence N $30{ }^{\circ} 54^{\prime} 21^{\prime \prime} \mathrm{W}, 193.79$ feet to a point on a non-tangent curve concove Southeasterly having a radius of 762.70 feet, and a central ongle of $08^{\circ} 52^{\prime} 54^{\prime \prime}$; thence from a tangent bearing of $S 63^{\circ} 58^{\prime} 49^{\prime \prime} \mathrm{W}$ run Southwesterly along the arc of said curve, 118.23 feet; thence $S 55^{\circ} 05^{\prime} 55^{\circ} \mathrm{W}, 58.77$. feet to a point of curvature of a curve concave Southeasterly having a rodius of 160.82 feet, and a central angle of $1916^{\prime} 01^{\prime \prime}$; thence run Southwesterly along the arc of said curve, 54.08 feet; to a point of reverse curvature of a curve concave Northwesterly having a radius of 159.35 feet, and a central angle of $36^{\circ} 15^{\prime} 00^{\prime \prime}$; thence run Southwesterly along the arc of said curve, 100.82 feet; thence $S 72^{\circ} 04^{\prime} 54^{\prime \prime} \mathrm{W}, 26.78$ feet to a paint of curvature of a curve concave Southeasterly having a radius af 158.03 feet , and a central angle of $21^{\circ} 54^{\prime} 44^{\prime \prime}$; thence run Southwesterly along the orc of said curve, 60.44 feet; to a point on a non-tangent curve concave Northeasterly having a radius of 52.89 feet, and a central angle of $104^{\circ} 26^{\prime} 29^{\prime \prime}$; thence from a tangent bearing of $575^{\circ} 27^{\prime} 00^{\prime \prime} \mathrm{W}$ run Northwesterly along the arc of said curve, 96.41 feet; thence $N 00^{\circ} 06^{\prime} 37^{\prime \prime} W, 54.31$ feet; thence $N 74^{\circ} 49^{\prime} 42^{\prime \prime} \mathrm{W}, 43.41$ feet; thence $S 44^{\circ} 47^{\prime} 41^{\prime \prime} \mathrm{W}, 145.43$ feet; thence $S 455^{\circ} 05^{\prime} 06^{\prime \prime} \mathrm{E}, 18.68$ feet; thence $S 03^{\circ} 14^{\prime} 02^{\prime \prime} \mathrm{W}$, 84.66 feet; thence $S 05^{\circ} 12^{\prime} 38^{\prime \prime} E, 58.35$ feet to a point of curvature of a curve concave Easterly having a radius of 1125.00 feet, and a central angle of $27.57^{\prime} 29^{\prime \prime}$; thence run Southerly along the arc of said curve, 548.95 feet; thence $S 33^{\prime} 10^{\prime} 07^{\prime \prime} E_{1} 163.59$ feet to a point of curvature of a curve concave Westerly having a radius of 492.00 feet, and a central angle of $26^{\circ} 59^{\prime} 13^{\prime \prime}$; thence run Southerly along the arc of soid curve, 231.74 feet; thence $\mathrm{N} 86^{\circ} 26^{\prime} 26^{\prime \prime} \mathrm{E}$, 126.87 feet; thence $N 76^{\prime} 15^{\prime} 46^{\prime \prime}$ E, 63.89 feet; thence $S 64.36^{\prime} 17^{\prime \prime} \mathrm{E}, 118.17$ feet; thence $S 52^{\circ} 36^{\prime} 40^{\prime \prime} \mathrm{E}$, 63.05 feet; thence $S 45^{\circ} 16^{\prime} 16^{\prime \prime}$ E, 127.88 feet to a point of curvature of a curve concave Southwesterly having a radius of 25.00 feet, and a central angle of $35^{\prime} 13^{\prime} 41^{\prime \prime}$; thence run Southeasterly along the arc of said curve, 15.37 feet; thence S $10.02^{\prime} 35^{\prime \prime} \mathrm{E}, 93.01$ feet to a point of curvature of a curve concave Westerly having a radius of 25.00 feet, and a central angle of $46^{\circ} 18^{\prime} 35^{\prime \prime}$; thence run Southerly along the arc of said curve, 20.21 feet; thence $S 36^{\circ} 16^{\prime} 00^{\prime \prime} \mathrm{W}, 28.53$ feet; thence $S 20^{\circ} 23^{\prime} 46^{\prime \prime} \mathrm{W}, 184.90$ feet; thence $S 25^{\circ} 05^{\prime} 40^{\prime \prime} \mathrm{W}, 31.33$ feet to a point on a non-tangent curve concave Northwesterly having a radius of 25.00 feet, and a central angle of $33^{\circ} 58^{\prime \prime} 13^{\prime \prime}$; thence from a tangent bearing of S $211^{\circ} 14^{\prime \prime} 14^{\prime \prime} \mathrm{W}$ run Sauthwesterly along the arc of said curve, 14.82 feet; thence $555^{\circ} 12^{\circ} 27^{\prime \prime} \mathrm{W}, 19.76$ feet; thence S $18^{\circ} 42^{\prime} 59^{\prime \prime} \mathrm{W}, 22.23$ feet to a point on a non-tangent curve concave Southwesterly having a radius of 1908.34 feet, and a central angle of $22^{\circ} 05^{\prime} 51^{\prime \prime}$; thence from a tangent bearing of $S 75^{\circ} 17^{\prime} 36^{\prime \prime} \mathrm{E}$ run Southeasterly along the are of said curve, 736.00 feet; thence $S 53^{\circ} 11^{\prime} 44^{\prime \prime} \mathrm{E}, 1498.58$ feet to a point of curvature of a curve concave Northeasterly having a rodius of 950.92 feet, and a central angle of $14^{\circ} 29^{\prime} 06^{\prime \prime}$; thence run Southeasterly along the arc of said curve, 240.40 feet; to a point of compound curvature of a curve concove Northerly having a radius of 513.39 feet, and a central ongle of $13^{\circ} 13^{\prime} 42^{\prime \prime}$; thence run Easterly along the arc of soid curve, 118.53 feet; thence $S 80^{\circ} 54^{\prime} 32^{\prime \prime} \mathrm{E}, 34.76$ feet to a paint of curvature of a curve concave Northerly having a radius of 1109.03 feet, and a central angle of $07{ }^{\prime} 17^{\prime} 21^{\prime \prime}$; thence run Easterly along the arc of said curve, 141.09 feet; thence $S 88^{\prime} 11^{\prime} 54^{\prime \prime} \mathrm{E}, 77.05$ feet; thence S $89^{\circ} 29^{\prime} 03^{\circ} \mathrm{E}, 140.11$ feet; thence $S 9^{\circ} 29^{\prime} 03^{\prime \prime} \mathrm{E}, 433.68$ feet; thence $\mathrm{N} 89^{\circ} 58^{\circ} 59^{\prime \prime} \mathrm{E}, 1465.17$ feet; thence $\mathrm{N} 00^{\circ} 00^{\prime} 00^{\prime \prime}$ $E, 131.18$ feet; thence $N 45^{\circ} 00^{\prime} 00^{\prime \prime} W_{1} 71.68$ feet; thence $N 00^{\circ} 00^{\prime} 00^{\prime \prime} \mathrm{E}, 633.08$ feet; thence $N 89^{\circ} 59^{\prime} 00^{\prime \prime} \mathrm{W}, 445.76$ feet; thence $N 00^{\circ} 27^{\prime} 46^{\prime \prime} \mathrm{E}, 673.19$ feet; thence $S 89^{\circ} 58^{\prime} 17^{\prime \prime} \mathrm{E}, 398.81$ feet; thence $N 00^{\circ} 00^{\prime} 00^{\prime \prime} \mathrm{E}, 753.74$ feet; thence $N 90.00^{\prime} 00^{\prime \prime} W, 362.43$ feet; thence $N 05^{\circ} 16^{\prime} 59^{\prime \prime} W_{1} 106.23$ feet; thence $N 26^{\circ} 33^{\prime} 54^{\prime \prime} W_{1} 135.35$ feet; thence N $47^{\circ} 32^{\circ} 44^{\prime \prime}$ E, 146.69 feet; thence $N 11^{\prime} 28^{\prime} 34^{\prime \prime} \mathrm{E}, 24.04$ feet to a paint of curvature of a curve concave Westerly having a radius of 15.00 feet, and a central angle of $52.09^{\prime} 22^{\prime \prime}$; thence run Northerly along the arc of said curve, 13.65 feet; thence $N 40^{\circ} 40^{\prime} 48^{\prime \prime}$ W. 82.81 feet: thence $N 90^{\circ} 00^{\prime} 00^{\prime \prime} \mathrm{W}, 73.87$ feet to a point on a non-tangent curve concave Westerly having a radius of 1396.50 feet, and a central angle of $06^{\circ} 53^{\prime \prime} 10^{\prime \prime}$; thence from a tangent bearing of N $07.09^{\circ} 56^{\prime \prime} \mathrm{E}$ run Northerly along the orc of said curve, 167.84 feet; thence $\mathrm{N} 00^{\circ} 16^{\prime} 47^{\prime \prime} \mathrm{E}, 0.50$ feet to the Northwest corner of the Northeast $1 / 4$ of the Southwest $1 / 4$ of Section 17 Township 24 South Range 28 East; thence S $89.56^{\circ} 53^{\prime \prime} \mathrm{E}, 3992.90$ feet along the North line of the South half of Section 17, to the East $1 / 4$ corner of Section 17: thence $S 0^{\circ} 24^{\prime \prime} 52^{\prime \prime}$ W, 2682.68 feet along the East section line of Section 17 to the Southeast corner of Section 17 and the Northeast comer of Section 20, Township 24 South, Range 28 East; thence $500^{\circ} 01^{\circ} 36^{\prime \prime} E, 1333.66$ feet along the East section line of Section 20 to the Southeast corner of the Northeast $1 / 4$ of the Northeast $1 / 4$ of Section 20 CONTINUED ON SHEET 5

	SURVEYNG AND MAPPING DEPARTMENT P.O.B. 10000 LAKE BUENA MSTA PH $32830-1000$ FAX (407)560-7869	FLWG AREA DISNEY OVERALL	$\begin{aligned} & \text { DATE } \\ & 12 / 07 / 17 \\ & \hline \end{aligned}$
		RCID WATER/WASTE WATER TERRITORY	
		SKETTCH OF DESCRIPTION	DRAWN EY: JLG
		EXHISIT A1, SHEET 4 OF 31 SHEETS	FllesaMEs

CONTINUED FROM SHEET 4

and the Southwest corner of the Northwest $1 / 4$ of the Northwest $1 / 4$ of Section 21, Township 24 South, Range 28 East; thence $N 89.57^{\prime} 37^{\prime \prime} \mathrm{E}, 670.11$ feet to the Northwest corner of the Northeast $1 / 4$ of the Southwest $1 / 4$ of the Northwest $1 / 4$ of Section 21 ; thence $S 00.08^{\prime} 32^{\prime \prime} \mathrm{E}, 668.06$ feet to the Southwest corner thereof; thence $S 89^{\circ} 55^{\prime} 30^{\prime \prime}$ E, 671.45 feet to the Northeast corner of the Southeast $1 / 4$ of the Southwest $1 / 4$ of the Northwest $1 / 4$ of Section 21; thence $S 00^{\circ} 15^{\prime} 27^{\prime \prime} E, 669.41$ feet to the Northwest corner of the Northeast $1 / 4$ of the Southwest $1 / 4$ of Section 21; thence $500^{\circ} 44^{\prime \prime} 42^{\prime \prime} \mathrm{E}, 656.38$ feet to the Northwest corner of Lot 85 , Munger and Company Subdivision of Section 21, according to the Plat recorded in Plat Book E Page 22 of the Public Records of this County, thence $S 89^{\circ} 51^{\circ} 01^{\prime \prime} \mathrm{E}$, 335.66 feet to the Northeast corner of said Lot 85 ; thence $S 00^{\circ} 40^{\circ} 49^{\prime \prime} \mathrm{E}, 656.31$ feet to the Southeast corner of Lot 85; thence $S 89.53^{\prime} 15^{\prime \prime} \mathrm{E}, 1004.75$ feet along the North line of the Southeast $1 / 4$ of the Southwest $1 / 4$ of Section 21 to the Northeast comer thereof; thence $S 00^{\prime} 29^{\prime} 10^{\prime \prime} E, 655.63$ feet along the West line of the Northwest 1/4, Southwest $1 / 4$ of the Southeast $1 / 4$ of Section 21 to the Southwest corner thereof; thence $N 89.20^{\prime} 56^{\prime \prime}$ E. 666.99 feet along the South line of the Northwest $1 / 4$, Southwest $1 / 4$ of the Southeast $1 / 4$ of Section 21 to the Southeast corner thereof; thence $N 0021^{\prime} 22^{\prime \prime} \mathrm{W}, 652.39$ feet along the West line of the Northeast $1 / 4$, Southwest $1 / 4$ of the Southeast $1 / 4$ of Section 21 to the Northwest corner thereof; thence $N 89^{\circ} 37^{\prime} 38^{\prime \prime} \mathrm{E}, 2005.42$ feet along the North line of the South half of the Southeast $1 / 4$ of Section 21 to the Northeast corner thereof, said paint olso being the Southwest corner of the Northwest $1 / 4$ of the Southwest $1 / 4$ of Section 22, Township 24 Sauth, Range 28 East; thence $N 000^{\circ} 02^{\prime \prime} \mathrm{E}, 1285.39$ feet along the West line of Section 22 to the West $1 / 4$ corner of Section 22; thence N $890^{\circ} 49^{\prime \prime} \mathrm{E}, 2691.31$ feet along the North line of the South half of Section 22 to the Westerly right-of-way of State Road 400 as shown in map section $75280-2465$ and dated $2 / 22 / 1993$; thence run along said right-of-way, 5 $38^{\prime} 29^{\prime} 42^{\prime \prime} \mathrm{W}, 7143.82$ feet to a point on the Westerly right-of-way line of State Road 536 as shown in map section 75000-2520 and dated 3/05/1998; thence departing State Road 400 run along State Road 536 the following courses; S $43^{\circ} 35^{\prime} 42^{\prime \prime} \mathrm{W}, 1571.48$ feet to a point on a non-tangent curve concave Northwesterly having a radius of 1809.86 feet, and a central angle of $37^{\circ} 23^{\prime} 06^{\prime \prime}$; thence from a tangent bearing of $\mathrm{S} 42^{\circ} 29^{\prime} 42^{\prime \prime} \mathrm{W}$ run Southwesterly along the arc of soid curve, 1180.92 feet; thence S $79.52^{\prime} 51^{\prime \prime}$ W, 1498.72 feet to a point on the West line of Section 28 , and on the East line of Section 29, Township 24 South, Range 28 East, said point lying $\mathrm{N} 00^{\circ} 00^{\prime} 07^{\prime \prime} \mathrm{W} .387 .61$ feet from the Southwest corner of Section 28; thence $579^{\circ} 52^{\prime} 53^{\prime \prime} \mathrm{W}$, 95.47 feet to a point of curvature of a curve concave Northerly having a radius of 2191.83 feet and a central angle of $32^{\prime} 28^{\prime} 09^{\prime \prime}$; thence run Westerly along the arc of said curve, 1242.10 feet; thence $N 69^{\circ} 59^{\prime} 50^{\prime \prime} \mathrm{W}, 311.61$ feet; thence run $\mathrm{S} 23^{\prime 2} 29^{\prime} 47^{\prime \prime} \mathrm{W}, 304.91$ feet to a point on a non-tangent curve concave Southwesterly, having a radius of 11402.16 feet and a central angle of $00^{\circ} 29^{\prime \prime} 43^{\prime \prime}$; thence from a tangent bearing of $565^{\circ} 33^{\prime} 17^{\prime \prime} \mathrm{E}$, run Southeasterly along the arc of said curve, 98.56 feet; thence 5 $58^{\circ} 56^{\prime} 26^{\prime \prime} \mathrm{E}, 509.41$ feet to a point on a non-tangent curve concave Sauthwesterly, having a radius of 900.00 feet and a central angle of $02^{\prime} 31^{\prime} 40^{\prime \prime}$; thence run Southeasterly along the arc of said curve 39.70 feet to a point on the South line the Southeast $1 / 4$ of Section 29 , said point lying $N 89^{\circ} 50^{\prime} 43^{\prime \prime}$ W, 1167.48 feet from the Southeast corner of Section 29; thence leaving said right-of-way, run $N 89^{\circ} 50^{\prime} 43^{\prime \prime} W$ along the South line of the Southeast $1 / 4$ of Section $29,1496.10$ feet, to the South Quarter corner thereof; thence $N 89^{\circ} 50^{\prime} 42^{\prime \prime}$ W, 2152.59 feet along the South line of the Southwest $1 / 4$ of Section 29 to a point on the right-of-way of Chelonia Parkway as shown on the Plat of Bonnet Creek Resort recorded in Plat Book 56, Page 41 of the Public Records of this County, thence run along said right-of-way the following courses; due North 163.29 feet to the point of curvature of a curve concave Southeasterly, having a radius of 675.00 feet and a central angle of $45^{\circ} 40^{\prime} 47^{\prime \prime}$; thence run Northeasterly along the arc of said curve 538.15 feet to a point of reverse curvature of a curve concave Westerly, having a radius of 825.00 feet and a central angle of $98^{\circ} 34^{\prime} 08^{\prime \prime}$; thence run Northeasterly and Northwesterly along the arc of said curve 1419.29 feet to a point of reverse curvature of a curve concave Northeasterly having a radius of 500.84 feet and a central angle of $22^{\circ} 53^{\circ} 21^{\prime \prime}$; thence run Northwesterly and Northerly along the arc of said curve 200.08 feet; thence $\mathrm{N} 30^{\circ} 00^{\circ} 00^{\prime \prime} \mathrm{W}, 607.96$ feet; thence due North, 86.60 feet; thence due West 67.60 feet to a point of curvature of a curve concave Southerly having a radius of 611.16 feet and a central angle of $19^{\circ} 01^{\prime} 18^{\prime \prime}$; thence run Westerly along the arc of said curve and Southerly right-of-way 202.90 feet; thence S $57^{\circ} 06^{\prime} 40^{\prime \prime}$ E, 167.71 feet; S $30^{\circ} 00^{\prime} 00 \prime$ E, 180.00 feet; S $06^{\circ} 15^{\prime} 02^{\prime \prime} \mathrm{E}, 54.63$ feet; S $30^{\circ} 00^{\prime} 00^{\prime \prime}$ E. 408.17 feet to a point of curvature of a curve concave Northeasterly, having a radius of 650.84 feet and a central angle of $22^{\circ} 53^{\prime} 21^{\prime \prime}$; run Southeosterly along the arc of said curve 260.00 feet; to a point of reverse CONTINUED ON SHEET 6

		FLIWG AREA DISNEY OVERALL	12/07/17
	MAPPING DEPARTMENT P.O.B. 10000	$\stackrel{\text { Proiect }}{\text { RCID }}$ WATER/WASTE WATER TERRITORY	
mentitit mintishatens	Lake buena vista FL. 32830-1000		DRAWN EY: JLG
	FAX (407)560-7869	EXHMEIT A1, SHEET 5 OF 31 SHEETS	FILDNAME: $\begin{aligned} & \text { FLLENANE: } \\ & 10 . J G 09096 R 2 \end{aligned}$

CONTINUED FROM SHEET 5

curvature of a curve concave Westerly, having a radius of 675.00 feet and a central angle of $98^{\circ} 34^{\prime} 08^{\prime \prime}$; thence run Southeasterly and Southwesterly along the arc of said curve 1161.24 feet to a point of reverse curvature of a curve concave Southeasterly, having a radius of 825.00 feet and a central angle of $45^{\circ} 40^{\prime} 47^{\prime \prime}$; thence run Southwesterly along the arc of said curve, 657.74 feet; thence due South, 162.89 feet to the South line of the Southwest $1 / 4$ of Section 29; thence departing the right-of-way line of Chelonia Parkway run $\mathrm{N} 89^{\circ} 50^{\prime} 42^{\prime \prime} \mathrm{W}$ along the South line of the Southwest $1 / 4$ of Section 29, 360.99 feet to the Southwest corner of Section 29 and the Northeast corner of Section 31, Township 24 South, Range 28 East; thence $S 00^{\circ} 40^{\prime} 50^{\prime \prime} \mathrm{E}, 2749.41$ feet along the East line of the Northeast $1 / 4$ of Section 31 to the Southeast comer thereof; thence $S 00^{\circ} 27^{\prime} 13^{\prime \prime} \mathrm{W}, 2643.90$ feet along the East line of the Southeast $1 / 4$ of Section 31 to the Southeast corner of Section 31; thence $N 89^{\circ} 36^{\prime} 01^{\prime \prime} \mathrm{W}, 2646.94$ feet along the South line of the Southeost $1 / 4$ of Section 31 to the Southwest corner thereof; thence N 89.56'54" W, 2748.82 feet along the South line of the Southwest $1 / 4$ of Section 31 to the Southwest corner thereof and the Southeast corner of Section 36, Township 24 South Range 27 East; thence S $89.50^{\prime} 04^{\prime \prime} \mathrm{W} .2658 .48$ feet along the South line of the Southeast $1 / 4$ of Section 36 to the Southwest corner thereof; thence $S 89.46^{\prime} 36^{\prime \prime} \mathrm{W}, 2656.21$ feet along the South line of the Southwest $1 / 4$ of Section 36 to the Southwest corner thereof and the Southeast corner of Section 35, Township 24 South Range 27 East; thence $S 89^{\circ} 48^{\prime} 35^{\prime \prime} \mathrm{W}, 2652.59$ feet alang the South line of the Southeast $1 / 4$ of Section 35 to the Southwest corner thereof; thence $S 89^{\circ} 44^{\circ} 07^{\prime \prime} \mathrm{W}, 2661.05$ feet along the South line of the Southwest $1 / 4$ of Section 35 to the Southwest corner of said Section and the Southeast corner of Section 34, Township 24 South Range 27 East; thence $S 89^{\circ} 46^{\prime} 46^{\prime \prime}$ W, 3438.73 feet along the South line of Section 34 to a point on the boundary of Black Lake Village according to the Plat thereof recorded in Plat Book 75, Page 149 of the Public Records of this County, thence leaving the South line of Section 34, run along the Easterly and Northerly boundary of said Plat following courses; $N 00^{\prime} 13^{\prime} 59^{\prime \prime} \mathrm{W}, 29.01$ feet; $N 14^{\prime} 42^{\prime} 28^{\prime \prime} \mathrm{W}, 114.62$ feet; $N 06.53^{\prime} 49^{\prime \prime} \mathrm{W}, 123.97$ feet to a point of curvature of a curve concave Easterly having a radius of 25.00 feet, and a central angle of $16^{\circ} 36^{\prime} 26^{\prime \prime}$; run Northerly along the arc of said curve, 7.25 feet; $N 09^{\circ} 42^{\prime} 37^{\prime \prime} \mathrm{E}, 104.21$ feet to a point of curvature of a curve concave Southeasterly having a radius of 25.00 feet, and a central angle of $51^{\circ} 24^{\prime} 11^{\prime \prime}$; run Northeasterly alang the arc of said curve, 22.43 feet; $N 61^{\circ} 05^{\prime \prime} 48^{\prime \prime} \mathrm{E}, 53.88$ feet; $N 71^{\circ} 34^{\prime} 02^{\prime \prime} \mathrm{E}, 17.56$ feet; $N 18^{\circ} 25^{\prime} 51^{\prime \prime} \mathrm{W}, 18.21$ feet to a point on a non-tangent curve concave Northeasterly having a radius of 50.00 feet, and a central angle of $106^{\circ} 48^{\prime} 50^{\prime \prime}$; from a tangent bearing of $\mathrm{N} 80^{\circ} 45^{\prime} 36^{\prime \prime} \mathrm{W}$ run Northwesterly along the arc of said curve, 93.21 feet; $\mathrm{N} 31^{\circ} 47^{\prime} 40^{\prime \prime} \mathrm{W}, 44.69$ feet to a point on a non-tangent curve concave Northwesterly having a radius of 436.00 feet, and a central angle of $15^{\circ} 56^{\prime} 47^{\prime \prime}$; from a tangent bearing of $S 58^{\prime} 12^{\prime} 21^{\prime \prime} \mathrm{W}$ run Southwesterly along the arc of said curve, 121.35 feet; S $74^{\circ} 09^{\prime} 08^{\prime \prime} \mathrm{W}, 308.68$ feet to a point of curvoture of a curve concove Southeosterly having a radius of 514.00 feet, and a central angle of $20.05^{\prime} 00^{\prime \prime}$; run Southwesterly along the arc of said curve, 180.17 feet; $55^{\circ} 04^{\prime} 10^{\prime \prime} \mathrm{W}$, 67.69 feet to a point of curvature of a curve concave Northerly hoving a radius of 315.00 feet, and a central angle of $355^{\circ} 55^{\prime} 53^{\prime \prime}$; run Westerly along the arc of said curve, 197.54 feet; $N 899^{\circ} 59^{\prime} 58^{\prime \prime} \mathrm{W}, 83.84$ feet to a point of curvature of a curve concave Northerly having a radius of 381.00 feet and a central angle of $34{ }^{\circ} 07^{\prime} 58^{\prime \prime}$; run Westerly along the arc of said curve, 226.97 feet; to a point of reverse curvature of a curve concave Southerly having a radius of 384.88 feet, and a central angle of $34^{\circ} 00^{\prime} 28^{\prime \prime}$; run Westerly along the arc of said curve, 228.44 feet; ta a point of reverse curvature of a curve concave Northerly having a radius of 185.00 feet, and a central angle of $35{ }^{\circ} 39^{\prime} 45^{\prime \prime}$; run Westerly along the arc of said curve, 115.15 feet; to a point of compound curvature of a curve concave Easterly having a radius of 47.00 feet, and a central angle of $130^{\circ} 32^{\prime} 06^{\prime \prime}$; run Northerly along the arc of said curve, 107.08 feet; $N 76^{\circ} 19^{\prime} 21^{\prime \prime} E, 28.14$ feet; $S 8^{\circ} 22^{\prime} 47^{\prime \prime} E, 9.24$ feet; $N 75^{\circ} 08^{\prime} 23^{\prime \prime} E, 42.15$ feet; $N 66^{\circ} 44^{\prime} 45^{\prime \prime} E, 45.92$ feet; $N 58^{\prime \prime} 10^{\prime} 56^{\prime \prime} E$, 7.13 feet; N $40^{\circ} 00^{\prime} 00^{\prime \prime} \mathrm{E}, 8.68$ feet; $N 28^{\circ} 21^{\prime \prime} 12^{\prime \prime} \mathrm{E}, 21.50$ feet; $N 19^{\circ} 11^{\prime} 05^{\prime \prime} \mathrm{E}, 7.97$ feet; $N 05^{\circ} 44^{\prime} 49^{\prime \prime} \mathrm{E}, 22.07$ feet; N 09.37'03" E, 18.85 feet: $N 28^{\circ} 18^{\prime} 59^{\prime \prime}$ E, 25.32 feet; $N 39^{\circ} 33^{\prime} 24^{\prime \prime}$ E, 18.56 feet; N $51^{\circ} 48^{\prime} 12^{\prime \prime}$ E, 17.01 feet; $N 53^{\prime 2} 20^{\prime} 03^{\prime \prime}$ E, 12.93 feet;
 E, 25.25 feet; $S 70{ }^{\circ} 01^{\prime} 08^{\prime \prime} \mathrm{E}, 21.22$ feet; $S 76.11^{\prime} 40^{\prime \prime} \mathrm{E}, 28.29$ feet; $S 81^{\circ} 04^{\prime} 45^{\prime \prime} \mathrm{E}, 15.99$ feet; $S 63^{\prime 1} 15^{\prime} 14^{\prime \prime} \mathrm{E}, 32.58$ feet; $S 71^{\circ} 35^{\prime} 23^{\prime \prime} E, 7.28$ feet; $S ~ 83^{\circ} 45^{\prime} 15^{\prime \prime} E, 20.77$ feet; $N 86^{\circ} 06^{\prime} 18^{\prime \prime} E, 21.64$ feet; $S 75^{\circ} 49^{\prime} 09^{\prime \prime} E, 17.31$ feet; S $87.55^{\prime} 16^{\prime \prime} E_{1} 10.48$ feet; $N 72^{\circ} 43^{\prime} 50^{\prime \prime} E_{1} 25.75$ feet; $N 60^{\circ} 42^{\prime} 21^{\prime \prime} E, 36.44$ feet; $N 77^{\prime} 16^{\prime} 53^{\prime \prime} E, 19.62$ feet; $N 68^{\circ} 37^{\prime} 24^{\prime \prime}$ E, 7.52 feet; $N 57^{\circ} 06^{\prime} 15^{\prime \prime}$ E, 21.62 feet; $N 48^{\circ} 30^{\prime} 29^{\prime \prime}$ E, 7.40 feet; $N 29^{\circ} 59^{\prime} 26^{\prime \prime} \mathrm{E}, 8.68$ feet; $N 13^{\circ} 42^{\prime} 55^{\prime \prime} E$, 39.82 feet;

CONTINUED ON SHEET 7

	surveting and MAPPING DEPARTMENT P.O.B. 10000 AL B URENA VSTA PL $32830-1000$ FAX (407)560-7869	WLIG AREA DISNEY OVERALL	$\begin{aligned} & \text { DATE } \\ & 12 / 07 / 17 \\ & \hline \end{aligned}$
		$\stackrel{\text { Proaget NaME }}{\text { RCID }}$ WATER WASTE WATER TERRITORY	
		SRVETTPE	Dradw eys JLG.
		EXHIBIT A1 SHEET 6 OF 31 SHEETS	FLENAME 10JG09096R2

CONTINUED FROM SHEET 6

N $1006^{\circ} 24^{n}$ E, 32.03 feet; N $0143^{\prime} 31^{\prime \prime}$ W, 29.22 feet; N $05 \times 37^{\circ} 39^{\prime \prime}$ W, 26.82 feet; $N 1201^{\prime} 53^{\prime \prime} \mathrm{W}, 42.36$ feet; N $21^{\circ} 06^{\prime} 43^{\prime \prime} \mathrm{W}, 7.72$ feet; $N 36^{\circ} 50^{\prime} 10^{\prime \prime} \mathrm{W}, 37.65$ feet; $N 47^{\circ} 37^{\prime} 33^{\prime \prime} \mathrm{W}, 25.00$ feet; $N 56^{\prime} 19^{\prime} 26^{\prime \prime}$ W, 44.83 feet; $N 49.30^{\prime} 53^{\prime \prime}$
 feet; $N 80^{\circ} 08^{\prime} 53^{\prime \prime} \mathrm{W}, 56.11$ feet; $N 89^{\circ} 26^{\prime} 00^{\prime \prime} \mathrm{W}, 8.09$ feet; $S 8^{\prime} 14^{\prime} 14^{\prime \prime} \mathrm{W}, 46.34$ feet; $S 78^{\circ} 42^{\prime} 25^{\prime \prime} \mathrm{W}, 40.49$ feet; S $77^{\circ} 43^{\prime} 02^{\prime \prime} \mathrm{W}, 63.74$ feet; $S 79^{\circ} 09^{\prime} 43^{\prime \prime} \mathrm{W}, 47.65$ feet; S $72^{\circ} 48^{\prime} 44^{\prime \prime} \mathrm{W}, 44.03$ feet; $\mathrm{S} 63^{\prime \prime} 14^{\prime} 34^{\prime \prime} \mathrm{W}, 42.60$ feet; $S 57^{\circ} 48^{\prime} 39^{\prime \prime}$ W, 28.70 feet; $S 64^{\prime 2} 21^{\prime} 00^{\prime \prime} \mathrm{W}, 20.44$ feet; $S 67^{\circ} 06^{\prime} 48^{\prime \prime} \mathrm{W}, 29.21$ feet; $S 83^{\circ} 28^{\prime} 20^{\prime \prime} \mathrm{W}, 29.99$ feet; $S 83^{\circ} 04^{\prime} 31^{\prime \prime} \mathrm{W}, 27.06$ feet; $\mathrm{S} 84^{\circ} 19^{\prime} 19^{\prime \prime} \mathrm{W}, 42.81$ feet to a point of curvature of a curve concave Northeasterly having a radius of 50.00 feet, and a central angle of $83^{\prime} 36^{\circ} 01^{\prime \prime}$; run Northwesterly along the arc of said curve, 72.95 feet; to a point of compound curvature of a curve concove Easterly having a radius of 188.00 feet, and a centrol angle of $27^{\circ} 45^{\prime} 45^{\prime \prime}$; run Northerly along the arc of said curve, 91.10 feet; $589^{\circ} 52^{\prime} 10^{\prime \prime} \mathrm{W}, 174.16$ feet; thence departing said Plat run alang the West line of the Southwest $1 / 4$ of Section $34, \mathrm{~N} 00^{\circ} 00^{\prime} 19^{\prime \prime} \mathrm{E}, 313.89$ feet to the Northwest corner of the Southwest $1 / 4$ of the Southwest $1 / 4$ of Section 34 and the Northeast corner of the Southeast $1 / 4$ of the Southeast $1 / 4$ of Section 33, Township 24 South, Range 27 East; thence continue $\mathrm{N} 00^{\circ} 00^{\prime} 19^{\prime \prime} \mathrm{E} 498.35$ feet to the Southeast corner of the North $5 / 8$ of the Northeast $1 / 4$ of the Southeast $1 / 4$ of Section 33 ; thence run along the South line of the North $5 / 8$ of the Northeast $1 / 4$ of the Southeast $1 / 4$ of Section $33, N 89^{\prime} 47^{\prime} 57^{\prime \prime} \mathrm{W}, 1326.58$ feet to the Southwest corner thereof; thence run along the West line of the North $5 / 8$ of the Northeast $1 / 4$, of the Southeast $1 / 4$ of Section $33, N$ $00^{\circ} 00^{\prime} 31^{\prime \prime} \mathrm{E}, 835.26$ feet to the Northwest corner thereof; thence run along the West line of the Sautheast $1 / 4$ of the Northeast $1 / 4$ of Section $33, \mathrm{~N} 00^{\circ} 00^{\prime} 25^{\prime \prime} \mathrm{E}, 1321.43$ feet to the Northwest corner thereof; thence run along the North line of the Southeost $1 / 4$ of the Northeast $1 / 4$ of Section $3.3, \mathrm{~S} 89^{\circ} 55^{\prime} 44^{\prime \prime} \mathrm{E}, 1326.40$ feet; to the Northeast corner thereof; thence run along the West line of the Northwest $1 / 4$ of Section 34 Township 24 South Range 27 East, N $00^{\circ} 00^{\prime} 06^{\prime \prime} \mathrm{E}, 1329.09$ feet to the Northwest corner thereof; thence $\mathrm{N} 89^{\circ} 53^{\prime} 53^{\prime \prime} \mathrm{E}, 2679.47$ feet along the North line of the Northwest $1 / 4$ of Section 34 to the Northeast corner thereof and the Southwest corner of the Southeost $1 / 4$ of Section 27. Township 24 South, Range 27 East; thence $N 00^{\circ} 01^{\prime} 11^{\prime \prime} \mathrm{W}, 3964.69$ feet along the West line of the East $1 / 2$ of Section 27 to the Southeast corner of the Northeast $1 / 4$ of the Northwest $1 / 4$ of Section 27; thence S $89.37^{\prime} 54^{\prime \prime}$ W, 1332.15 feet along the South line of the Northeast $1 / 4$ of the Northwest $1 / 4$ of Section 27 to the Southwest corner thereof; thence $N 00^{\circ} 08^{\prime} 12^{\prime \prime} \mathrm{E}, 1330.97$ feet along the West line of the Northeast $1 / 4$ of the Northwest $1 / 4$ of Section 27 to the Northwest corner thereof; thence S $89^{\circ} 46^{\circ} 29^{\prime \prime} \mathrm{W}, 1328.51$ feet along the North line of the Northwest $1 / 4$ of Section 27 to the Northwest corner of Section 27 and the Northeast corner of Section 28, Township 24 South, Range 27 East; thence $S 9^{\circ} 4 B^{\prime} 06^{\prime \prime}$ W, 1331.20 feet alang the North line of the Northeast $1 / 4$ of the Northeast $1 / 4$ of Section 28, to the Northeast corner of the West $1 / 2$ of the Northeast $1 / 4$ of Section 28; thence S $00^{\prime} 12^{\prime} 18^{\prime \prime} \mathrm{W}, 882.69$ feet along the East line of the West $1 / 2$ and the Northeast $1 / 4$ of Section 28 , Township 24 South, Range 27 E to a point on the Westerly right of way line of State Road 429 as described in Official Records Book 7070, Page 2553 and Book 7106. Page 2802 of the Public Records of Orange County, Florida and a point on a non-tangent curve concave Southwesterly having a radius of 2204.09 feet, and a central angle of $07^{\circ} 27^{\prime} 37^{\prime \prime}$; thence from a tangent bearing of $N 29^{\prime} 38^{\prime} 58^{\prime \prime} \mathrm{W}$ run Northwesterly along the arc of said curve and right of way line, 286.99 feet; thence continue along said right of way line the following two courses; $N 37^{\prime} 06^{\prime} 36^{\prime \prime} \mathrm{W}, 690.17$ feet to a point on a non-tangent curve concave 'Northeasterly having a radius of 770.43 feet, and a central angle of $09^{\circ} 59^{\prime \prime} 15^{\prime \prime}$: thence from a tangent bearing of $\mathrm{N} 39^{\circ} 00^{\prime} 55^{\prime \prime} \mathrm{W}$ run Northwesterly along the arc of said curve, 134.30 feet; thence N $\mathrm{BB}^{\circ} 43^{\prime} 15^{\prime \prime} \mathrm{W}, 555.85$ feet to a point on the Easterly right of way line of Flamingo Crossing Blva. as described in Official Records Book 10815, Page 4619 of the Public Records of Orange County, Florida and a non-tangent curve concave Westerly having a radius of 1010.00 feet, and a central angle of $0159^{\prime} 18^{\prime \prime}$; thence from a tangent bearing of S $05^{\circ} 40^{\prime} 55^{\prime \prime} \mathrm{E}$ run Southerly along the arc of said curve and right of way line, 35.05 ; thence $\mathrm{S} 89^{\circ} 48^{\prime \prime} 06^{\prime \prime} \mathrm{W}, 125.95$ feet along the South line of the Southeast $1 / 4$ of Section 21, Township 24 South, Range 27 East to the Southwest corner thereof: thence S $89^{\circ} 49^{\prime} 36^{\prime \prime} \mathrm{W}, 483.70$ feet; along the South line of the Southwest $1 / 4$ of Section 21, Township 24 South, Range 27 East; thence $N 4017^{\prime} 32^{\prime \prime} \mathrm{W}, 323.52$ feet; thence $N 32^{\prime} 21^{\prime} 38^{\prime \prime} \mathrm{W}, 271.63$ feet; thence $\mathrm{N} 34^{\prime} 30^{\prime} 31^{\prime \prime} \mathrm{W}$, 120.76 feet; thence $N 46^{\circ} 26^{\prime} 37^{\prime \prime} \cdot \mathrm{W}, 108.80$ feet; thence $589^{\circ} 49^{\prime} 14^{\prime \prime} \mathrm{W}, 28.71$ feet to a point of curvature of a curve concave Southerly having a radius of 934.00 feet, and a central angle of $01^{\circ} 05^{\prime} 30^{\prime \prime}$; thence run Westerly along the arc of said curve, 17.79 feet; thence $S 00^{\prime} 10^{\prime} 31^{\prime \prime} \mathrm{E}, 11.26$ feet; thence $S 89^{\circ} 49^{\prime} 29^{\prime \prime} \mathrm{W}, 28.35$ feet; thence $S 04^{\circ} 02^{\circ} 58^{\prime \prime} \mathrm{E}$, CONTINUED ON SHEET 8

		FLLIG AREA DISNEY OVERALL	$12 / 07 / 17$
¢	SURVEING AND MPPPING DEPARTMENT P. OP. 10000	$\stackrel{\text { Praiect }}{\text { RCID }}$ N WATER/W ASTE WATER TERRITORY	
nemithinit sinien	LAKE BUENA VSTA	SURVY NPE SK OF OESCRIPTION	DRAWN EY: JLG
	FAX 4077) $560-7869$	EXHIBIT A1, SHEET 7 OF 31 SHEETS	

CONTINUED FROM SHEET 7

4.66 feet; thence S $86^{\circ} 05^{\prime} 06^{\prime \prime}$ W, 22.85 feet; thence $N 03^{\circ} 54^{\prime \prime} 54^{\prime \prime}$ W, 6.14 feet; thence $S 89^{\circ} 49^{\prime} 29^{\prime \prime}$ W, 173.97 feet to a point of curvature of a curve concave Northerly having a radius of 2158.53 feet, and a central angle of $24.05^{\prime} 38^{\prime \prime}$; thence run Westerly along the arc of said curve, 907.70 feet; thence $N 66^{\circ} 04^{\prime} 53^{\prime \prime} \mathrm{W}, 548.81$ feet; thence $\mathrm{N} 00^{\circ} 35^{\prime} 44^{\prime \prime}$ E, 1606.72 feet along the West line of the Southwest $1 / 4$ of Section 21 . Township 24 South, Range 27 East to the Northwest corner thereof; thence $N 00^{\circ} 35^{\prime} 56^{\prime \prime}$ E, 2659.37 feet along the West line of the Northwest $1 / 4$ of Section 21 to the Northwest corner of Section 21 and the Southeast corner of Section 17, Township 24 South, Range 27 East; thence $\mathrm{N} 00^{\circ} 02^{\prime} 13^{\prime \prime} \mathrm{E}, 2669.40$ feet along the East line of the Southeast $1 / 4$ of Section 17 to the Northeast corner thereof; thence S $89^{\circ} 43^{\prime} 49^{\prime \prime} \mathrm{W}, 1347.90$ feet along the South line of the East $1 / 2$ of the Northeast $1 / 4$ of Section 17, to the Southwest corner thereof; thence $N 00118^{\prime} 18^{\prime \prime} \mathrm{W}, 2652.68$ feet along the West line of the East $1 / 2$ of the Northeast $1 / 4$ of Section 17 to the Northwest corner thereaf; thence $5899^{\prime \prime} 39^{\prime} 31^{\prime \prime} \mathrm{W}, 2661.03$ feet along the North line of Section 17 to the Northwest corner of the Northeast $1 / 4$ of the Northwest $1 / 4$ of Section 17 and the Southwest corner of the Southeast $1 / 4$ of the Southwest $1 / 4$ of Section 8 , Township 24 South. Range 27 East; thence N $00 \cdot 24^{\prime} 44^{\prime \prime}$ E, 242.11 feet along the West line of the Southeast $1 / 4$ of the Southwest $1 / 4$ of Section 8 to a point on the Easterly right-of-way line of County Road 545 as described in Deed Book 402, Page 355 of the Public Records of this County, said point being a point on a non-tangent curve concave Westerly, having a radius of 2826.01 feet, and a central angle of $19^{\circ} 14^{\prime} 15^{\prime \prime}$; thence from a tangent bearing of $\mathrm{N} 18.34^{\circ} 50^{\prime \prime}$ E, run Northerly along the arc of said curve and right-of-way, 948.86 feet; thence continue along said right-of-way, $\mathrm{N} 00^{\circ} 39^{\prime} 25^{\prime \prime} \mathrm{W}, 141.86$ feet; thence N $89^{\circ} 41^{\prime} 27^{\prime \prime}$ E, 1188.92 feet along the North line of the Southeast $1 / 4$ of the Southwest $1 / 4$ of Section 8 to the Northeast corner thereof; thence $N 00^{\prime} 15^{\prime} 09^{\prime \prime} \mathrm{E}, 1315.34$ feet along the West line of the Northwest $1 / 4$ of the Southeast $1 / 4$ of Section 8 to the Northwest corner thereof; thence $N 00.14^{\prime} 57^{\prime \prime} E, 50.00$ feet along the West line of the Northeast $1 / 4$ of Section 8 to a point on the Northerly right-of-way line of Flamingo Crossings Boulevard as described in Official Records Book 9782, Page 7172 of the Public Records of this County, thence run along said right-of-way line the following three courses; $N 89^{\circ} 43^{\prime} 25^{\prime \prime} \mathrm{E}, 671.30$ feet; $N 23^{\circ} 57^{\prime} 49^{\prime \prime} \mathrm{E}, 158.82$ feet to a point on a non-tangent curve concave Southwesterly having a radius of 2750.09 feet, and a central angle of $04.43^{\prime} 07^{\prime \prime}$; from a tangent bearing of $S 3376^{\prime} 29^{\prime \prime} \mathrm{E}$ run Southeasterly along the arc of said curve. 226.49 feet; thence $\mathrm{N} 89^{\circ} 43^{\prime} 24^{\prime \prime} \mathrm{E}$, 1808.38 feet along the North line of the Southeast $1 / 4$ of Section 8 to the Northeast corner thereof and the Northwest corner of the Southwest $1 / 4$ of Section 9, Township 24 South, Range 27 East; thence run $\mathrm{N} 89^{\circ} 44^{\prime} 05^{\prime \prime} \mathrm{E}$, 1325.36 feet along the North line of the Northwest $1 / 4$ of the Southwest $1 / 4$ of Section 9 to the Northeast corner thereof, thence $S 00{ }^{\circ} 8^{\prime} 51^{\prime \prime}$ W, 1314.23 feet along the East line of the Northwest $1 / 4$ of the Southwest $1 / 4$ of Section 9 to the Southeast corner thereof; thence $N 89^{\circ} 45^{\prime \prime} 10^{\prime \prime} \mathrm{E}, 1327.55$ feet along the North line of the Southeast $1 / 4$ of the Southwest $1 / 4$ of Section 9 to the Northeast corner thereof; thence $S 00^{\circ} 03^{\prime} 05^{\prime \prime} \mathrm{W}, 1314.64$ feet along the East line of the Southeast $1 / 4$ of the Southwest $1 / 4$ of Section 9 to the Southeast corner of the Southwest $1 / 4$ of Section 9 ; thence $N 899^{\circ} 53^{\prime} 46^{\prime \prime}$ E, 2633.36 feet along the South line of the Southeast $1 / 4$ of Section 9 to the Southeast corner thereof and the Southwest corner of Section 10, Township 24 South, Range 27 East; thence $\mathrm{N} 00^{\prime} 15^{\prime} 35^{\prime \prime} \mathrm{E}$, 5286.81 feet along the West section line of Section 10 to the Northwest corner thereof and the Southwest corner of Section 3. Township 24 South. Range 27 East; thence $N 0011^{\prime} 50^{\prime \prime} \mathrm{W}, 2661.64$ feet along the West line of the Southwest 1/4, Section 3 to the Northwest corner thereof; thence $N 899^{\prime} 39^{\prime \prime} 5 \mathrm{E}, 3976.31$ feet along the North line of the South half of Section 3 to the Northeast corner of the Northwest $1 / 4$ of the Southeast $1 / 4$ of Section 3 ; thence S $00^{\circ} 04^{\prime} 39^{\prime \prime} \mathrm{E}, 1326.78$ feet along the East line of the Northwest $1 / 4$ of the Southeast $1 / 4$ of Section 3 to the Northwest corner of the Southeast $1 / 4$ of the Southeost $1 / 4$ of Section 3; thence $N 89^{\circ} 37^{\prime} 16^{\prime \prime} \mathrm{E}, 1328.99$ feet along the North line of the Southeast $1 / 4$ of the Southeast $1 / 4$ of Section 3 to the Northeast corner thereof and the Northwest comer of the Southwest $1 / 4$ of the Southwest $1 / 4$ of Section 2, Township 24 South, Range 27 East; thence $\mathrm{N} 00^{\circ} 07^{\prime} 50^{\prime \prime} \mathrm{W}, 1325.78$ feet along the West line of Northwest $1 / 4$, of the Southwest $1 / 4$, of Section 2 to the Northwest corner thereof; thence $N 00^{\circ} 07^{\prime} 43^{n} \mathrm{~W}, 400.13$ feet along the West line of the Northwest $1 / 4$, of Section 2; thence run along the Northerly boundary of a deed recorded in Official Records Book 1457. Page 934 of the Public Records of this County the following three courses; $N 86^{\circ} 46^{\prime} 13^{\prime \prime} \mathrm{E}, 1024.87$ feet; $N 77^{\prime} 37^{\prime} 23^{\prime \prime} \mathrm{E}, 1103.42$ feet; N $53^{\prime} 18^{\prime} 38^{\prime \prime} \mathrm{E}, 1872.82$ feet to a point on the Southerly right-of-way line of Reoms Rood as shown on Plat book 3, Page 85 of the Public Records of this County, thence run along said right-of-way line the following three courses; S CONTINUED ON SHEET 9

surverng and P.O.B. 10000 LAKE BUENA VSTA FL 32830-1000 PHONE (407)560-7118FAX 407$)^{5660-7689}$	WLIWG AREA DISNEY OVERALL	\| ${ }_{\text {PATE }} / 2 / 07 / 17$
	RCID WATER/WASTE WATER TERRITORY	
	SKETCEH OF DESCRIPTION	DRAWN BY: JLG
	EXHIBIT A1, SHEET 8 OF 31 SHEETS	$\begin{aligned} & \text { FLDNAME: } \\ & 100 \mathrm{JGO} 9096 \mathrm{R} 2 \\ & \hline \end{aligned}$

CONTINUED FROM SHEET \&
$43^{\circ} 40^{\prime} 10^{\prime \prime} \mathrm{E}, 1382.92$ feet to the beginning of a curve concave to the Northeast, having a radius of 546.86 feet and a central angle of $46^{\circ} 21^{\prime} 00^{\prime \prime}$; thence run Southeasterly along the arc of said curve 442.39 feet; thence $N \quad 89^{\circ} 58^{\prime} 50^{\prime \prime} E$, 341.61 feet; thence leaving said right-of-way, run $S 00^{\prime} 19^{\prime} 24^{\prime \prime} \mathrm{E}, 603.75$ feet along the East line of the Northeast $1 / 4$ of Section 2, to the Southeost corner thereof, and the Northwest corner of the Northwest $1 / 4$ of the Southwest $1 / 4$ of Section 1, Township 24 South, Range 27 East; thence $N 89^{\circ} 43^{\prime} 47^{\prime \prime} E_{1}$ along the North line of the Northwest $1 / 4$ of the Southwest $1 / 4$ of Section 1, 1297.19 feet to a point 25 feet West of the Northeast corner of the Northwest $1 / 4$ of the Southwest $1 / 4$ of Section 1 ; thence $N 00^{\circ} 12^{\prime} 21^{\prime \prime} \mathrm{W}, 598.76$ feet along a line that is 25.00 feet West af and parallel to the West line of the Southeast $1 / 4$ of the Northwest $1 / 4$ of Section 1 to the Southerly right-of-way line of aforesaid Reams Raad; thence $N 899^{\circ} 56^{\prime} 46^{\prime \prime}$ E, 100.00 feet along said Southerly right-of-way of Reams Raod; thence run along the Easterly and Northerly boundary of a deed recorded in Official Records Book 1465, Page 307 of the Public Records of this County the following five courses; $S 02^{\circ} 04^{\prime} 12^{\prime \prime} \mathrm{E}, 523.43$ feet; $\mathrm{N} \mathrm{B9}{ }^{\circ} 43^{\prime} 40^{\prime \prime} \mathrm{E}$, 52.00 feet; S $00^{\circ} 12^{\prime} 21^{\prime \prime} \mathrm{E}, 49.00$ feet; $N B 9^{\circ} 43^{\prime} 41^{\prime \prime} \mathrm{E}, 229.00$ feet; $S 0072^{\prime} 25^{\prime \prime} \mathrm{E}, 26.23$ feet; thence $N B 9^{\prime} 43^{\prime} 47^{\prime \prime} E_{1} 1039.16$ feet along the North line of the South half of Section 1 to a point. 90.00 feet East of the Northeast corner of the Southwest $1 / 4$ of Section 1; thence $S 05^{\prime} 34^{\prime} 33^{\prime \prime} \mathrm{W}, 911.86$ feet; thence $S 005^{\prime} 18^{\prime \prime} \mathrm{E}, 420.00$ feet along the East line of the Northeast $1 / 4$ of the Southwest $1 / 4$ of Section 1 to the Southeast corner thereof; thence $N \quad 89^{\circ} 44^{\prime} 10^{\prime \prime} E$, 2649.93 feet along the North line of the South half of the Southeast $1 / 4$ of Section 1 to the Point of Beginning.

Also including the following described parcels:
A parcel of land lying in Sections 27 and 28 , Township 24 South, Range 28 East, Orange County, Flarida, and being more particularly described as follows:

Begin at the West Quarter corner of Section 27, run along the West line of the Northwest $1 / 4$ of Section, $N 00.02^{*} 53^{\prime \prime}$ E, 682.89 feet; thence run along the South line of the Northeast $1 / 4$ of the Southeast $1 / 4$ of the Northeast $1 / 4$ of Section 28, N $899^{\circ} 56^{\prime} 04^{\prime \prime}$ W, 599.53 feet to a point on the Easterly right-of-way line of State Road 400 as shown in map section $75280-2465$ and dated $2 / 22 / 1993$; thence run along said right-of-way line the following five courses; N $38^{\circ} 29^{\circ} 40^{\prime \prime}$ E, 85.01 feet; thence $S 51^{\circ} 29^{\prime} 59^{\prime \prime}$ E, 24.30 feet; thence $N 42^{\circ} 29^{\prime} 47^{\circ} \mathrm{E}, 519.07$ feet to a point of curvature of a curve concave Southeasterly having a radius of 616.02 feet, and a central angle of $37{ }^{\circ} 22^{\prime} 29^{\prime \prime}$; thence run Northedsterly along the arc of said curve, 401.84 feet; thence $N 79^{\circ} 53^{\prime} 24^{\prime \prime} E, 876.12$ feet; thence run alang the westerly boundary of a deed recorded in Official Recorded Book 5128 , Page 3223 of the public Records of this County the follow six courses; $S 10^{\circ} 05^{\prime} 08^{\prime \prime} E, 841.27$ feet to a point on a non-tangent curve concave Northwesterly having a radius of 50.00 feet, and a central angle of $89^{\circ} 59^{\prime} 49^{\prime \prime}$; thence from a tangent bearing of $510^{\circ} 05^{\prime} 20^{\prime \prime} E$ run Southwesterly along the arc of said curve, 78.54 feet; thence $S 794^{\circ} 54^{\prime \prime} \mathrm{W}, 57.02$ feet to a point on a nan-tangent curve concave Southeasterly having a radius of 85.00 feet, and a central angle of $85.16^{\prime} 57^{\prime \prime}$; thence from a tangent bearing of $S 79^{\circ} 54^{\prime} 19^{\prime \prime} \mathrm{W}$ run Southwesterly along the arc of said curve, 126.52 feet; thence $505^{\circ} 22^{\prime} 41^{\prime \prime} \mathrm{E}, 31.47$ feet; thence $N 79^{\circ} 52^{\prime} 20^{\prime \prime} E, 360.78$ feet; thence run along the Westerly right-af-way line of State Road 535 as shown in map section $75560-2610$ and dated $8 / 7 / 1992,510^{\circ} 07^{\prime \prime} 19^{\prime \prime} \mathrm{E}, 100.00$ feet; thence run along the Northerly and Westerly boundary of a deed recorded in Official Recorded Book 4869, Page 2401 of the Public Records of this County the follow five courses; $S 79^{\circ} 52^{\prime} 17^{\prime \prime} \mathrm{W}, 391.52$ feet to a point on a non-tangent curve concave Southerly having a radius of 420.98 feet, and a central angle of $02^{\circ} 26^{\prime} 38^{\prime \prime}$; thence from a tangent bearing of $S 79^{\circ} 53^{\prime} 33^{\prime \prime} W$ run Westerly along the arc of said curve, 17.96 feet; thence $S 123^{\prime} 06^{\prime \prime} \mathrm{E}, 124.13$ feet; thence $N 792^{\circ} 06^{\prime \prime} \mathrm{E}, 52.23$ feet; thence $S 10^{\circ} 07^{\prime} 42^{\prime \prime} \mathrm{E}, 221.02$ feet to a point on the South line of the Northwest $1 / 4$ of Section 27; thence run along said South line $58^{\circ} 42^{\circ} 32^{\prime \prime} \mathrm{W}, 1102.84$ feet to the Point of Beginning.

CONTINUED ON SHEET 10

	MAPPING DEPARTMENT P.0.E 10000 LAKE BUENA USTA FL 32830-1000 FAX $40775650-7869$	FWLWG AREA DISNEY OVERALL	DATE:07/17
		${ }^{\text {PRo..ECT NAWE }}$ RCID WATER/WASTE WATER TERRITORY	
		SNRVYTPE	${ }_{\text {dRAWN }}^{\text {dig }}$
		EXHIBIT A1 SHEET 9 OF 31 SHEETS	FILENAME: 101609006R2

CONTINUED FROM SHEET 9

Less the following described parcels:
That portion of Lots 110 and 111 of the Munger and Company Subdivision of Section 22, Township 24 South, Range 28 East according to the Plat recorded in Plat Book E Page 22 of the Public Records of Orange County, Florida, being more particularly described as:

Commence at the Northwest corner of the Southwest $1 / 4$ of the Southwest $1 / 4$ of Section 22 , run $589^{\circ} 27^{\prime \prime} 13^{\prime \prime}$ E, 464.18 feet along the North line of the Southwest $1 / 4$ of the Southwest $1 / 4$ of Section 22 ; thence $500^{\circ} 32^{\prime} 47^{\prime \prime} \mathrm{W}$, 15.00 feet to a point on the North line of soid Lot 111 and the Point of Beginning; thence $S 89^{\prime 2} 27^{\prime} 13^{\prime \prime} \mathrm{E}, 300.00$ feet along the North line of Lots 110 , and 111 to the West right-of-way of State Road 400 as shown in map section 75280-2465 and dated $2 / 22 / 1993$; thence $504^{\circ} 05^{\prime} 32^{\prime \prime} \mathrm{E}, 150.49$ feet along the said right-of-way, thence N $89^{\circ} 27^{\prime} 13^{\prime \prime}$ W, 312.17 feet along the South line of the North 150.00 feet said Lots 110 and 111 ; thence $N \quad 00 \cdot 32^{\prime} 47^{\prime \prime} E$, 150.00 feet to the Point of Beginning.

And

That part of the Northwest $1 / 4$ of the Southeast $1 / 4$ of the Southwest $1 / 4$ and the Northeast $1 / 4$ of the Southwest $1 / 4$ of the Southwest $1 / 4$ of Section 22. Township 24 South. Range 28 East, being more particularly described as:

Commence at the Northwest corner of the Southwest $1 / 4$ of the Southwest $1 / 4$ of Section 22 , run along the North line of the South $1 / 2$ of the Southwest $1 / 4$ of Section 22, $S 897^{\prime \prime} 13^{\prime \prime} E, 985.26$ feet, to the Point of Beginning; thence cantinue along said line $S 9^{\circ} 27^{\prime} 13^{\prime \prime} \mathrm{E}, 642.78$ feet; thence run alang the Westerly right-of-way line af State Road 400 as shown in map section 75280-2465 and dated $2 / 22 / 1993$ the following three courses; $S 46^{\circ} 05^{\prime} 23^{\prime \prime} \mathrm{W}$, 681.12 feet to a point on a non-tangent curve concave Northerly having a radius of 60.00 feet, and a central angle of $118^{\circ} 45^{\prime} 23^{\prime \prime}$; from a tangent bearing of $546^{\circ} 06^{\prime} 36^{\prime \prime} \mathrm{W}$ run Westerly along the arc of said curve, 124.36 feet; N $15^{\circ} 07^{\prime} 40^{\prime \prime}$ W, 205.41 feet; thence run along the West line of Lot 109 of the Munger and Company Subdivision of Section 22, according to the Plat recorded in Plat Book E Page 22 of the Public Records of this County, $N 00^{\circ} 14^{\prime} 30^{\prime \prime} E$, 252.64 feet to the Point of Beginning.

Containing 17,764.366 acres more or less.

	SURVEYNG AND MAPPING DEPARTMENT P.O.B. 10000 LAKE BUENA VSTA FL 32830-1000 PHONE (407)560-7118 FAX (407)560-7869	FLLIG AREAWDW DISNEY OVERALLPRORETN NMERCID WTER/WASTE WATER TERRITORY						$\begin{aligned} & \hline \text { DATE } \\ & 12 / 07 / 17 \\ & \hline \text { SCALE } \end{aligned}$	
		SWRVETME							DRAWN BY: JLG
		COMMENTS EXHIBIT A1, SHEET 10 OF 31 SHEETS							FLENAME: $10 \mathrm{JGO9096R2}$

INTERLOCAL AGREEMENT BETWEEN
 REEDY CREEK IMPROVEMENT DISTRICT AND
 ORANGE COUNTY
 FOR DELIVERY OF WHOLESALE WATER SERVICES TO THE FLAMINGO CROSSINGS DEVELOPMENT

THIS INTERLOCAL AGREEMENT (the "Agreement") is made and entered into on the date of later execution below, by and between the REEDY CREEK IMPROVEMENT DISTRICT, a public corporation and public body corporate and politic of the State of Florida, whose address is P.O. Box 10170, Lake Buena Vista, Florida 32830 ("Supplier"), and ORANGE COUNTY, a charter county and political subdivision of the State of Florida (the "County"), whose address is 201 South Rosalind Avenue, Orlando, Florida 32801 . Hereinafter, Supplier and the County may be referred to individually as a "Party" or collectively as the "Parties."

WITNESSETH:

WHEREAS, the Florida Interlocal Cooperation Act of 1969, Section 163.01, Florida Statutes, permits local governments to make the most efficient use of their powers by enabling them to cooperate with other localities on a basis of mutual advantage and thereby provide services and facilities in a manner that will accord best with the needs and development of local communities; and

WHEREAS, Supplier and the County are retail providers of water, wastewater and reclaimed water services (collectively, "Water Services") in their respective service areas; and

WHEREAS, the County is currently the retail provider of Water Services to property hereinafter referred to "FC Ultimate," a map of which is attached hereto and incorporated herein as Exhibit "A"; and

WHEREAS, contemporaneously with the execution of this Agreement, Supplier and the County intend to amend that certain Reedy Creek Improvement District/Orange County Amended and Restated Water, Wastewater, and Reclaimed Water Service Territorial Agreement, dated September 30, 2008 (the "Territorial Agreement"), by which it is recognized that parcels FC-1 and FC-2, which are areas inside of FC Ultimate, have been removed from the water, wastewater, and reclaimed water territory of the Reedy Creek Improvement District (the "RCID's Territorial Area") and are now within the territorial jurisdiction of the County (the "Adjacent Territorial Area"); and

WHEREAS, the County has agreed to remedy any hydraulic constraints in its water system that would constrain its ability to meet the FC Ultimate water demands within ten years of the Effective Date, as that term is defined below in this Agreement; and

WHEREAS, Supplier acknowledges that the developers of FC Ultimate must construct or cause to be constructed, at their sole cost, and dedicate to the County water, wastewater, and reclaimed water transmission, collection, and distribution lines, and related appurtenances, as required to serve FC Ultimate to a point of connection as hereinafter set forth in this Agreement. No later than the execution of this Agreement, Supplier and the County intend to execute an Access and Utility Easement over Supplier's right-of-way within the FC Ultimate and between the FC Ultimate and CR 545, up to and including the County System Point of Connection, as defined in Paragraph 3.b; and

WHEREAS, while FC Ultimate will be developed by third parties, the Master Utility Plan has been approved by the County through their development review process (the "County Approved MUP"), which is attached hereto and incorporated herein as Exhibit "B;" and

WHEREAS, pursuant to the Territorial Agreement, all customers within the FC Ultimate shall be customers of the County and subject to, inter alia, connection fees, capital charges, and rates for all Water Services as established by the County from time to time; and

WHEREAS, Supplier desires to provide wholesale Water Services to the County, and the County desires to receive wholesale Water Services from Supplier under terms and conditions set forth in this Agreement; and

WHEREAS, the Parties entered into a letter agreement entitled "Amendment to Substitute Letter Agreement for Orange Lake/Reams Road Wastewater Interconnection and Wholesale Service" (the "Wastewater Letter Agreement"), which has an effective date of January 24, 2018, in accordance with the Territorial Agreement, to govern the provision of certain wholesale wastewater service by Supplier to the County; and

WHEREAS, the Parties entered into a letter agreement entitled "Amendment to 2012 Flamingo Crossings Letter Agreement for Water and Reclaimed Water Interconnection and Wholesale Service" (the "Water Letter Agreement") which has an effective date of January 24, 2018, in accordance with the Territorial Agreement, to govern the provision of certain wholesale water and reclaimed water services by Supplier to the County; and

WHEREAS, the intent of this Agreement is not to amend, modify, or in any way affect any terms or conditions or the Territorial Agreement, the Water Letter Agreement, or the Wastewater Letter Agreement; and

WHEREAS, Supplier and the County hereby determine this Agreement to be in the public interest.

NOW THEREFORE, in consideration of the commitment of Supplier to provide wholesale Water Services to the County, and the commitment of the County to accept these Water Services, and other good and valuable consideration, the receipt and sufficiency of which are hereby acknowledged, the Parties agree to the following terms and conditions.

1. , PREMISES

Each and all of the foregoing recitals are agreed to and form a material part of this Agreement.

2. TERM OF THE AGREEMENT; EXPIRATION; TERMINATION OF SERVICE

The term of this Agreement shall commence on the date it is fully executed by both Parties (the "Effective Date"). This Agreement shall expire on the last date that Supplier provides wholesale. Water Services, and the County initiates water, wastewater, and reclaimed water services to the FC Ultimate directly from its utility systems (the "Term"). Notwithstanding the foregoing, if the County experiences a hydraulic constraint in its water system due, in whole or in part, to the delivery of water to the FC Ultimate, then the Term shall be extended to the date the County eliminates the hydraulic constraint as provided in paragraph 3(d) below. Supplier's provision of wholesale water, wastewater, or reclaimed water services may be individually terminated prior to the expiration of this Agreement pursuant to Sections 3, 4, and 5 below.

3. PROVISION OF WHOLESALE WATER SERVICE

(a) The County agrees to complete construction and place in service the County's Malcolm Road Water Supply Facility (the "MRWSF") and the County's Avalon

Road Water Storage and Repump Facility (the "WSRF") on or before the eighth anniversary of the Effective Date.
(b) Supplier shall provide wholesale water service to the County, based on the County Approved MUP attached in Exhibit "B," for its retail customers within the FC Ultimate on a temporary basis (1) until the date of construction substantial completion and the placing into service of the MRWSF and the WSRF, County infrastructure is available at the intersection of CR 545 and Western Way (the "County System Point of Connection"), and the FC Ultimate water service is connected, at no cost to the County, to the County system as shown on Exhibit "C;" or (2) until the date of construction substantial completion of the MRWSF and WSRF, and the FC Ultimate water service is connected to the County system beyond the County System Point of Connection, at no cost to the County, at the intersection of CR 545 and Western Way.
(c) At any time after the MRWSF and WSRF have reached substantial completion and have been placed into service or after eight years from the Effective Date, whichever comes first, if Supplier requires all or a portion of the volume of water that is wholesaled to the County to provide water service to the FC Ultimate for use within Supplier's water service area, then Supplier may construct a new water interconnect with the County's water system at Reams Road or near the intersection of Buena Vista Drive and CR 535 at the Supplier's sole cost. Such interconnect shall be used to deliver water from the County's water system to Supplier's water system in an amount equivalent to that being delivered to the FC Ultimate by Supplier. A separate agreement will be required to govern the use of the interconnect and water deliveries described in this paragraph.
(d) If after the County initiates water service to the FC Ultimate and the County determines that it needs additional water to address a hydraulic constraint due to peak hourly flows or fire flow demand in its water system due to the County's delivery of water to the FC Ultimate, then at the County's request Supplier shall provide wholesale water service to the County for use by the FC Ultimate for peak hourly flow and/or fire flow until such time as the County eliminates the hydraulic constraint. The County shall eliminate the hydraulic constraint on or before the tenth anniversary of the Effective Date.
(e) Upon fulfillment of the above conditions within Section 3, wholesale water service will be terminated and the County shall provide water service from its facilities to the FC Ultimate, based on the County Approved MUP, at the County's sole cost.
(f) The Parties agree that the quantity of water that flows to the County for the FC Ultimate shall not be included in the quantities identified in the Water Letter Agreement, but rather shall be in addition thereto.

4. PROVISION OF WHOLESALE WASTEWATER SERVICE

(a) The County agrees to complete construction and place in service the County's new Southwest Water Reclamation Facility (the "SWWRF") and the County's Avalon Road Master Wastewater Pump Station (the "MPS") on or before the tenth anniversary of the Effective Date.
(b) Supplier shall provide wholesale wastewater service to the County, based on the County Approved MUP attached in Exhibit "B," for its retail customers in the FC Ultimate on a temporary basis (1) until the date of construction substantial completion and the placing into service of the SWWRF and the MPS, County infrastructure is available at the intersection of CR 545 and Western Way, and the FC Ultimate wastewater service is connected, at no cost to the County, to the County system as shown on Exhibit "C;" or (2) until the SWWRF and the MPS are placed into service, and the FC Ultimate wastewater services are connected to the County system beyond the County System Point of Connection, at no cost to the County, at the intersection of CR 545 and Western Way.
(c) Upon fulfillment of the above conditions within Section 4, wholesale wastewater service will be terminated and the County shall provide wastewater service from its facilities to the FC Ultimate, based on the County Approved MUP, at the County's sole cost.
(d) Parties agree that the quantity of wastewater that flows from the County from the FC Ultimate shall not be included in the quantities identified in the Wastewater Letter Agreement, but rather shall be in addition thereto.

5. PROVISION OF WHOLESALE RECLAIMED WATER SERVICE

(a) The County agrees to complete construction and place in service the County's Avalon Road Reclaimed Water Storage and Repump Facility (the "RWSRF") on or before the tenth anniversary of the Effective Date.
(b) Supplier shall provide wholesale reclaimed water service to the County, based on the County Approved MUP attached in Exhibit "B," for its retail customers in the FC Ultimate on a temporary basis (1) until the date of construction substantial completion and the placing into service of the RWSRF, County infrastructure that is connected to the RWSRF, as shown in Exhibit "C," is available at the intersection of CR 545 and Western Way, and the FC Ultimate reclaimed water service is connected to the County system at no cost to the County; or (2) until the RWSRF is placed into service, and at no cost to the County, the FC Ultimate reclaimed water service is connected to the County system beyond the intersection of CR 545 and Western Way, including a connection to the RWSRF.
(c) Upon fulfillment of the above conditions within Section 5, wholesale reclaimed water service will be terminated and the County shall provide reclaimed water service from its facilities to the FC Ultimate, based on the County Approved MUP, at the County's sole cost.
(d) The Parties agree that the quantity of reclaimed water that flows to the County for the FC Ultimate shall not be included in the quantities identified in the Water Letter Agreement, but rather shall be in addition thereto.

6. RATE, PAYMENT, AND BILLING

(a) Throughout the term of this Agreement, Supplier shall provide the Water Services to the County at the rates provided herein.

Water Rate

Supplier will charge and the County will pay wholesale rate equivalent to 96.2% of Supplier's Potable Water GS-1 retail rate (currently $\$ 1.02$ per thousand gallons equating to a wholesale rate of $\$ 0.98$ per thousand gallons). Whenever Supplier raises its retail Potable Water GS-1 rate, the wholesale rate applied to the County shall likewise increase proportionately.

Reclaimed Water Rate

Supplier will charge and the County will pay wholesale rate equivalent to 70.4% of Supplier's Reclaimed Water GS-1 retail rate (currently $\$ 0.84$ per thousand gallons equating to a wholesale rate of $\$ 0.59$ per thousand gallons). Whenever Supplier raises its retail Reclaimed Water GS-1 rate, the wholesale rate applied to the County shall likewise increase proportionately.

Wastewater Rate

Supplier will charge and the County will pay a wholesale rate equivalent to 47% of Supplier's Wastewater SC-1 retail rate (currently $\$ 5.62$ per thousand gallons of wastewater flow equating to a wholesale rate of $\$ 2.64$ per thousand gallons). Whenever Supplier raises its retail SC-1 rate, the wholesale rate applied to the County shall likewise increase proportionately.
(b) Notwithstanding the foregoing, at no time shall the Water Services rates Supplier charges the County hereunder exceed the lowest respective water, wastewater, and reclaimed water services rates Supplier charges any of its wholesale customers.
(c) Payment for Water Services delivered by Supplier to the County under this Agreement must be made to the Supplier's Authorized Representative at the address set
forth below. Supplier reserves the right to notify the County of a change in the Authorized Representative or its address by providing County a minimum of ten days advance notice of such change. The Authorized Representative is:

Reedy Creek Improvement District
Utility Division
Attn: Payables Clerk
P.O. Box 30000
Orlando, Florida 32891-8132

(d) Bills for water and reclaimed water service shall be calculated based on the respective monthly meter readings at the Wholesale Points of Connection as described in Section 8.
(e) The wastewater bill shall be based on the monthly water volume use as measured by the water meter at the Wholesale Point of Connection, multiplied by a factor of 0.818 (225 gpd per ERU divided by 275 gpd per ERC), where an Equivalent Residential Unit (ERU) for wastewater is equal to 225 gpd and an Equivalent Residential Connection (ERC) for water is equal to 275 gallons per day (gpd). Water used during construction of the new development within FC Ultimate may be subtracted from the wastewater bill upon request by the County provided that the water use is metered.
(f) Supplier shall bill the County on a monthly basis for Water Services. The County agrees to make payments to the Supplier within forty-five days from the date it receives such bill from the Supplier.

7. WATER USES

The County's use of the Water Services shall be limited to service only to those customers located within the FC Ultimate area as described in Exhibit "A."

8. WHOLESALE POINTS OF CONNECTION

(a) At no cost to the County, Supplier shall ensure that its Water Services systems are connected to the County's utility system, with flow meters and all appurtenances thereto, at the Wholesale Points of Connection depicted in Exhibit "D," such that the volume of Water Services delivered hereunder can be accurately measured. Exhibit "D" is attached hereto and incorporated herein by reference. All connections shall meet the County standards and are subject to approval by the County, which approval shall not be unreasonably delayed, conditioned, or withheld.
(b) Meter assemblies shall be constructed on or before the second anniversary of the Effective Date. After the Effective Date, and prior to the construction of the meter
assemblies, the wholesale utility bills shall be based on the monthly water and reclaimed water volume use as measured at the retail meters.
(c) Meter assemblies to be installed at the water and reclaimed water Wholesale Points of Connection shall be as shown in Exhibit "E." The division of ownership shall be as shown in Exhibit "D." Exhibit "E" is attached hereto and incorporated herein by reference.
(d) At no cost to the County, Supplier shall operate, maintain, and modify as necessary, its distribution, collection, and transmission systems on Supplier's side of the Wholesale Points of Connection to the County's utility system to the extent necessary to ensure delivery of Water Services to the FC Ultimate.
(e) At the time when Water Services end per Sections 3, 4, and 5 of this Agreement, the Parties agree to coordinate the facilitation of the transition of each utility Water Service from Suppliers' system to the County's utility system as soon as reasonably practical.

9. WATER QUALITY, QUANTITY

(a) Throughout the term of this Agreement, Supplier shall:
(1) deliver to the County water in volumes necessary to meet the needs of all County customers within FC Ultimate until permanent connection at the County System Point of Connection is made, unless previously terminated prior to the expiration of the term of the Agreement.
(2) deliver to the County reclaimed water in volumes necessary to meet the needs of all County customers within FC Ultimate until permanent connection at the County System Point of Connection is made, unless previously terminated prior to the expiration of the term of the Agreement.
(3) accept from the County wastewater in volumes necessary to meet the needs of all County customers within FC Ultimate until permanent connection at the County System Point of Connection is made, unless previously terminated prior to the expiration of the term of the Agreement.
(b) All water delivered by Supplier shall be of a quality consistent with the drinking water standards of the FDEP, EPA, and all other applicable laws and regulations.
(c) All reclaimed water delivered by Supplier shall be of a quality consistent with the requirements for "public access" treatment levels as described in rules of the FDEP, Chapters 62-600 through 62-650, Florida Administrative Code (FAC), and all other applicable laws and regulations.
(d) The County represents that it will not authorize wastewater from industrial users, as defined within Chapter 62-625, FAC, to be transmitted to Supplier's system.
(e) In the event an industrial user is allowed within the area serviced by this Agreement absent a prior modification to this Agreement as contemplated above, it shall be deemed a breach of this Agreement by the responsible Party.

10. METERING

Supplier shall install and properly calibrate metering equipment at all water and reclaimed water Wholesale Points of Connection. Such equipment shall remain the property of Supplier, who shall be responsible for its operation, maintenance, calibration and replacement throughout the term of this Agreement. Supplier shall read the meters for billing purposes. The metering equipment shall be of standard make and type and shall meet the standards of the American Water Works Association ("AWWA") for accuracy. With the County present, Supplier shall test the metering equipment for accuracy without charge to the County once during any twelve month period. Supplier shall perform such additional testing as may be requested by the County, with the County present, at a charge to the County not to exceed Supplier's actual cost for such tests. Supplier shall provide the County with copies of the test results within thirty days of each test. Notwithstanding the foregoing, Supplier will not charge the County for tests that discover an inaccurate meter, as defined by AWWA. If an inaccurate meter is discovered, Supplier shall make bill adjustments for up to twelve months preceding the test. Bill adjustments will be accounted for in the next billing cycle and a separate bill will not be generated.

11. COST OF CAPACITY

The applicant for utility connections for all parcels within FC Ultimate shall pay all applicable capital charges in accordance with Chapter 37 of the Orange County Code.

12. DEVELOPMENT APPROVALS

All development that occurs within FC Ultimate shall be subject to the requirements and approvals of the County's development process and applicable County ordinances and regulations, and shall be in accordance with the County Approved MUP. The County is not obligated to provide Water Service under this Agreement to any property within FC Ultimate until all applicable regulations are satisfied, including payment of capital charges. Supplier shall not enter into any contracts or approve any development or uses within the Flamingo Crossing Development that will conflict with the County's development processes. No construction of utility infrastructure shall be undertaken at the cost of the County. This agreement does not create a specific duty for either Supplier or the County to pay for infrastructure to support the demands of FC Ultimate. Developers of parcels or structures within the FC Ultimate shall be solely
responsible for the cost of infrastructure needed to provide Water Services to those projects. This Agreement does not preclude Supplier from participating or acting as or on behalf of a developer. The County has no duty to provide Water Services within the FC Ultimate in addition to the Water Services set forth in this Agreement.

13. CONSTRUCTION AND CONVEYANCE OF FUTURE INFRASTRUCTURE

All infrastructure within the FC Ultimate that provides Water Service to FC Ultimate shall be constructed in accordance with the County's most recent version of its Standards and Specification Manual. Developers of the FC Ultimate properties shall be responsible for acquiring all required governmental permits and approvals for the construction activities. All development in unincorporated Orange County shall be in accordance with the Orange County Standards within the standard review process and timing. The County shall have the right to make periodic inspections during the construction of the mains.

14. EASEMENTS

At no cost to the County, Supplier shall grant the County an Access and Utility Easement over Supplier's right-of-way for existing and future Utility System infrastructure needed to serve the FC Ultimate. This conveyance will be executed on or before the Effective Date and subject to the conditions set forth in Section 12 herein.

15. FORCE MAJEURE

(a) As used in this Agreement, an event of "Force Majeure" shall mean an unforeseeable act or event that prevents or delays or otherwise adversely affects a Party's performance of its obligations under this Agreement or compliance with any conditions required by the other Party under this Agreement if such act or event is beyond the reasonable control of and not the fault of the affected Party, including acts of God (e.g. flood, lightning, tornado, hurricane, sinkhole), acts of public enemy, and compliance with an order of governmental authority. In no event shall either Party be excused from payment obligations under this Agreement by reason of Force Majeure.
(b) If either Party is rendered wholly or partly unable to perform its obligations under this Agreement because of a Force Majeure event, that Party will be excused from whatever performance is affected by the Force Majeure event to the extent so affected, provided that: (1) the non-performing party, within forty-eight hours after knowing of the occurrence of the Force Majeure event, gives the other Party written notice describing the particulars of the occurrence; (2) the suspension of performance is of no greater scope and of no longer duration than is reasonably required by the Force Majeure event; and the nonperforming party uses reasonable efforts to overcome or mitigate the effects of such an occurrence.

16. ASSIGNMENT

Neither Party shall assign this Agreement to an entity other than a public agency, as that term is defined in Section 163.01(3)(b), Florida Statutes. Furthermore, neither Party shall assign this Agreement without the express written consent of the other, which shall not be unreasonably delayed, conditioned, or withheld.

17. COMPLIANCE WITH LAWS AND REGULATIONS

The Parties shall comply with all applicable federal, state, and local laws and regulations relating to the performance of the obligations set forth in this Agreement.

18. REASONABLE APPROVALS

In those instances in this Agreement in which a Party's approval, consent or satisfaction is required and a time period is not specified, then it shall be implied that such action shall be exercised in a reasonable manner and within a reasonable time frame relative to the nature of work or act in progress.

19. DEFAULT AND REMEDIES

(a) Failure by a party to perform any of its obligations hereunder shall constitute a default hereunder, entitling the non-defaulting party to pursue the remedies of specific performance, injunctive relief, or damages. Prior to either Party filing any action as a result of a default by the other Party under this Agreement, the non-defaulting Party exercising such right shall first provide the defaulting party with written notice specifying such default and the actions needed to cure same, in reasonable detail. Upon receipt of said notice, the defaulting Party shall be provided a thirty day opportunity within which to cure such default, unless such default is not capable of being cured within thirty days, in which case that Party must cure the default as soon as practicable. Failure to cure within the appropriate cure period, the non-defaulting Party may seek specific performance arising from such default.
(b) Notwithstanding any other provision of this Agreement, in no event shall either Party have liability to the other Party under this Agreement, whether based in contract, in tort, or otherwise, for (a) any special, incidental, indirect, exemplary or consequential damages, (b) damages with respect to cost of capital, loss of use of plant or plant capacity or equipment or claims of customers of either Party, as the case may be, if such damages are categorized as special, incidental, indirect, exemplary, or consequential, or (c) costs, loses, damages, fines or penalties to the extent that either Party is entitled to receive insurance proceeds pursuant to an insurance policy or policies covering such costs, loses, damages, expenses, fines or penalties.
(c) The Parties shall be responsible for their individual attorney's fees, costs, and expenses in any litigation, suit, dispute, controversy, mediation, or proceeding, including appellate proceedings, arising out of, based on, or related to, this Agreement.
(d) This Section of the Agreement shall survive termination/expiration of the Agreement.

20. NOTICES

(a) All notices required or authorized under this Agreement shall be given in writing and shall be served by mail on the parties at the addresses listed below:

Supplier:	District Administrator Reedy Creek Improvement District Post Office Box 10170 Lake Buena Vista, Florida 32830
	Director Reedy Creek Energy Services 5300 Center Drive Lake Buena Vista, FL 32830
The County:	Director Orange County Utilities 9150 Curry Ford Road Orlando, Florida 32825-7600
With a copy to:	County Administrator Orange County Administrator's Office
	201 S. Rosalind Avenue, 5
	Orlando, Florida 32801-3527

(b) Either Party may notify the others in writing of a change of address for Notices under this section, at least ten days prior to the effective date of the address change.

21. RELATIONSHIP OF THE PARTIES

The Parties do not intend to create hereby any joint venture, partnership, association, or other entity for the conduct of any business for profit. The Parties deem Supplier and the County to be independent contractors for the purposes of this Agreement, and not as agents or partners of the other.

22. AMENDMENTS

Any and all modifications to the provisions of this Agreement shall be made by mutual agreement of the Parties, in writing, and executed by the Parties.

23. DISCLAIMER OF THIRD PARTY BENEFICIARIES

This Agreement is solely for the benefit of the formal parties hereto and no right or cause of action shall accrue upon or by reason hereof, to or for the benefit of any third party not a formal party hereto.

24. SEVERABILITY

If any part of this Agreement is found invalid or unenforceable by any court, such invalidity or unenforceability shall not affect the other parts of this Agreement if the rights and obligations of the Parties contained therein are not materially prejudiced and if the intentions of the Parties can continue to be effectuated. To that end, this Agreement is declared severable.

25. NON-WAIVER

The failure of either Party to insist upon the other Party's compliance with its obligations under this Agreement in any one or more instances shall not operate to release such other Party from its duties to comply with such obligations in all other instances.

26. SOVEREIGN IMMUNITY

Nothing in this Agreement shall be deemed a waiver of sovereign immunity or limits of liability of either Party, including their respective commissioners, supervisors, officers, agents or employees, beyond the statutory limited waiver of immunity set forth in Section 768.28, Florida Statutes (2017), or other statute.

27. INDEMNIFICATION AND INSURANCE

(a) Each Party to this Agreement shall be responsible for all personal liability and property damage attributable to the negligent acts or omissions of that Party and its officials, agents, and employees, or arising out of or resulting from that Party's negligent performance under this Agreement (the "Negligent Party"). The Negligent Party agrees to defend, indernnify and hold harmless the other Party, its officials, agents, and employees from all claims, actions, losses, suits, judgments, fines, liabilities, costs and expenses in connection therewith, to the extent permitted by law.
(b) The contractor(s), subcontractor(s), consultant(s), and subconsultant(s) shall provide evidence of the hold harmless and indemnity prior to commencement of work and access to any of the property of the Parties.

28. APPLICABLE LAW

This Agreement is an Interlocal Agreement as provided in Section 163.01, Florida Statutes (2017). This Agreement and the provisions contained herein shall be construed, controlled, and interpreted according to the laws of the State of Florida. When required by law, the County agrees to join in any application for a required license, permit or other regulatory approval process necessary or appropriate for the operation of the Water Services that is the subject matter of this Agreement. Any litigation arising out of this Agreement shall be had in the federal or state courts located and lying within Orlando, Orange County, Florida. The Parties waive their respective rights to a jury trial.

29. RECORDING

This Agreement, including the Exhibits thereto, shall be recorded in the Public Records of Orange County, Florida. Supplier shall bear the costs and responsibility of such recording.

30. ENTIRE AGREEMENT

This Agreement constitutes the entire agreement and understanding between the Parties and shall supersede and replace any and all prior or contemporaneous representations, negotiations, statements, understandings, or agreements between the Parties, whether verbal or written, relating to the matters set forth herein and the execution of this Agreement and is merged into this Agreement. The Parties fully understand the terms and conditions of this Agreement, have entered into this Agreement voluntarily, and have received or had the opportunity to receive independent advice and legal counsel. This Agreement has been executed by the authorized representative of each Party on the date written below each signature.

31. TIME OF THE ESSENCE

Time is of the essence in implementing the terms of this Agreement.

32. HEADINGS; CONSTRUCTION OF AGREEMENT

The various section headings used in this Agreement are for convenience of reference only and are not to be used to construe, apply or enforce its substantive provisions. The Parties have participated jointly in the negotiation and drafting of this Agreement. In the event ambiguity or interpretation arises, this Agreement shall be construed as if drafted jointly by the Parties and no presumption or burden of proof shall
arise favoring any Party by virtue of the authorship of any of the provisions of this Agreement.

[SIGNATURES FOLLOW ON NEXT TWO PAGES]

AGREED TO AND EFFECTIVE ON THE DATE on which the later of the Parties to this Agreement executes it.
"SUPPLIER"
REEDY CREEK IMPROVEMENT DISTRICT
By: Board of Supervisors

By:

[ORANGE COUNTY'S SIGNATURES ON NEXT PAGE]

"COUNTY"
ORANGE COUNTY, FLORIDA
By: Board of County Commissioners

ATTEST: Phil Diamond, CPA, Orange County Comptroller as Clerk to the Board of County Commissioners

Exhibit "B"

to

Interlocal Agreement between Reedy Creek Improvement District and Orange County for Delivery of Wholesale Water Services to the Flamingo Crossings Development

COUNTY APPROVED MUP

Walt Disney World West District

Water, Wastewater, and Reclaimed Water Master Utility Plan

October 2018

Submitted to:
Orange County Utilities (OCU)

Prepared for:

and
Reedy Creek Energy Services (RCES)
Prepared by:

^TKINS

Member of the SNC-Lavalin Group

482 South Keller Road
Orlando, Florida 32810

Table of contents

Chapter Pages

1. Overview 5
1.1. Overview 5
2. Potable Water System 8
2.1. Introduction 8
2.2. Design Criteria 12
2.3. Potable Water Demand Development 13
2.4. Hydraulic Analysis 15
2.5. System Summary 18
3. Wastewater System 19
3.1. Introduction 19
3.2. Gravity Collection System 22
3.3. Lift Stations 22
3.4. Force Mains 23
3.5. Wastewater Flow Generation Development 24
3.6. System Summary 26
4. Reclaimed Water System 28
4.1. Introduction 28
4.2. Design Criteria 31
4.3. Reclaimed Water Demand Development 31
4.4. System Summary 33
Appendix A. Tie-in Pressure Data 34
Appendix B. Potable Water 35
Appendix C. Wastewater 68
Appendix D. Reclaimed Water 78
Appendix E. Lift Station Calculations 86
Appendix F. Flamingo Crossings Letter Agreement 94
Appendix G. Parcel Topographic Map 96
Appendix H. Existing FC West Pump Station Pump Curve 100
Appendix I. Gravity Districts - REMOVED 104
Appendix J. Approved Landuse Plan 106
Appendix K. Wholesale Meter Specification 108
Appendix L. RCID HGL Approval Letter 109
Tables
Table 2-1 RCID Potable Water System Design Criteria 12
Table 2-2 OCU Potable Water System Design Criteria 12
Table 2-3 OCU Potable Water Demand Development 14
Table 3-1 RCID Gravity Main Design Criteria 22
Table 3-2 OCU Lift Station Design Criteria. 23
Table 3-3 RCID Force Main Design Criteria 23
Table 3-4 OCU Force Main Design Criteria 24
Table 3-5 OCU Wastewater Flow Development 25
Table 3-6 Wastewater Model Lift Station Summary. 27
Table 4-1 RCID Reclaimed Water Design Criteria. 31
Table-4-2 OCU Service Area Reclaimed Water Design Criteria 31
Table 4-3 OCU Reclaimed Water Demand Development 32
Table B-1 Short-Term Scenario Orange Lake Fire Flow Results - Junction Report. 37
Table B-2 Short-Term Scenario Orange Lake Fire Flow Results - Reservoir Report 37
Table B-3 Short-Term Scenario Orange Lake Fire Flow Results - Pipe Report. 38
Table B-4 Short-Term Fire Flow analysis 39
Table B-5 Short-Term Scenario FC-1 Fire Flow Results - Junction Report 40
Table B-6 Short-Term Scenario FC-1 Fire Flow Results - Reservoir Report 40
Table B-7 Short-Term Scenario FC-1 Fire Flow Results - Pipe Report 41
Table B-8 Short-Term Scenario FC-2 Fire Flow Results - Junction Report 43
Table B-9 Short-Term Scenario FC-2 Fire Flow Results - Reservoir Report 43
Table B-10 Short-Term Scenario FC-2 Fire Flow Results - Pipe Report 44
Table B-11 Long-Term Scenario Orange Lake Fire Flow Results - Junction Report 45
Table B-12 Long-Term Scenario Orange Lake Fire Flow Results - Reservoir Report 46
Table B-13 Long-Term Scenario Orange Lake Fire Flow Results - Pipe Report 46
Table B-14 Long-Term Scenario FC-1 Fire Flow Results - Junction Report 47
Table B-15 Long-Term Scenario FC-1 Fire Flow Results - Reservoir Report 48
Table B-16 Long-Term Scenario FC-1 Fire Flow Results - Pipe Report 48
Table B-17 Long-Term Scenario FC-2 Fire Flow Results - Junction Report. 49
Table B-18 Long-Term Scenario FC-2 Fire Flow Results - Reservoir Report. 50
Table B-19 Long-Term Scenario FC-2 Fire Flow Results - Pipe Report. 51
Table B-20 Long-Term Scenario BI-N Fire Flow Results - Junction Report 52
Table B-21 Long-Term Scenario BI-N Fire Flow Results - Reservoir Report 53
Table B-22 Long-Term Scenario BI-N Fire Flow Results - Pipe Report 53
Table B-23 Long-Term Scenario BI-S Fire Flow Results - Junction Report 54
Table B-24 Long-Term Scenario BI-S Fire Flow Results - Pipe Report 55
Table B-25 Long-Term Scenario Bl-S Fire Flow Results - Reservoir Report. 56
Table B-26 Long-Term Fire Flow analysis 56
Table B-27 Short-Term Scenario Peak Hour Flow Junction Report 57
Table B-28 Short-Term Peak Hour Reservoir Report 57
Table B-29 Short-Term Scenario Peak Hour Pipe Report 58
Table B-30 Long-Term Scenario Peak Hour Flow Junction Report 59
Table B-31 Long-Term Peak Hour Reservoir Report 60
Table B-32 Long-Term Scenario Peak Hour Pipe Report 60
Table B-33 Short-Term Orange Lake Fire Fiow Interim Construction Scenario - Junction Report 61
Table B-34 Short Term Orange Lake Fire Flow Interim Construction Scenario- Pipe Report...... 62Table B-35 Short Term Orange Lake Fire Flow Interim Construction scenario- Reservoir Report63
Table B-36 Short Term FC-1 Fire Flow Interim Construction Scenario- Junction Report 63
Table B-37 Short Term FC-1 Fire Flow Interim Construction Scenario- pipe report 64
Table B-38 Short Term FC-1 Fire Flow Interim Construction Scenario- Reservoir report 65
Table B-39 Short term FC-2 Fire Flow Interim Construction Scenario- Junction report 65
Table B-40 Short term FC-2 Fire Flow Interim Construction Scenario- Pipe Report 66
Table B-41 Short term FC-2 Fire Flow Interim Construction Scenario - Reservoir Report 67
Table B-42 Short-Term Scenario Peak Hour Flow Results High Head - Junction Report 70
Table B-43 Short-Term Scenario Peak Hour Flow Results High Head - Reservoir Report. 70
Table B-44 Short-Term Scenario Peak Hour Flow Results High Head - Pipe Report 71
Table B-45 Short-Term Scenario Peak Hour Flow Results High Head - Pump Report 72
Table C-46 Long-Term Scenario Peak Hour Flow Results High Head - Junction Report 73
Table B-47 Long-Term Scenario Peak Hour Flow Results High Head- Reservoir Report 73
Table C-48 Long-Term Scenario Peak Hour Flow Results High Head - Pipe Report 74
Table C-49 Long-Term Scenario Peak Hour Flow Results High Head - Pump Report 75
Table C-1 Short-Term Scenario Peak Hour Demand Results - Junction Report 80
Table C-2 Short-Term Scenario Peak Hour Demand Results - Reservoir Report 80
Table C-3 Short-Term Scenario Peak Hour Demand Results - Pipe Report. 81
Table C-4 Long-Term Scenario Peak Hour Demand Results - Junction Report 83
Table C-5 Long-Term Scenario Peak Hour Demand Results - Reservoir Report 84
Table C-6 Long-Term Scenario Peak Hour Demand Results - Pipe Report 84
Figures
Figure 1-1 WDW West District Planned Developments 7
Figure 2-1 Short-Term Scenario Potable Water System Infrastructure 10
Figure 2-2 Long-Term Scenario Potable Water System Infrastructure. 11
Figure 2-3 Orange Lake Point of Connection 17
Figure 3-1 Short-Term Scenario Wastewater Infrastructure 20
Figure 3-2 Long-Term Scenario Wastewater Infrastructure 21
Figure 4-1 Short-Term Scenario Reclaimed Water System Infrastructure 29
Figure 4-2 Long-Term Scenario Reclaimed Water System Infrastructure 30
Figure B-1 Potable Water Pipe and Node Diagram. 36
Figure C-1 Wastewater Model Pipe \& Node Diagram by Parcel. 69
Figure C-2 FC-1 High Head Pump Curve 72
Figure C-3 FC-2 High Head Pump Curve 72
Figure C-4 Long Term Scenario FC-1 High Head Pump Curve 75
Figure C-5 Long Term Scenario FC-2 High Head Pump Curve 76
Figure C-6 Long Term Scenario BI-N High Head Pump Curve 76
Figure C-7 Long Term Scenario BI-S High Head Pump Curve 77
Figure C-1 Reclaimed Water Model Pipe and Node Diagram 79
Figure F-1 FC-1 Topographic Map 97
Figure F-2 FC-2 Topographic Map 98
Figure F-3 BI North and South Topographic Map 99

1. Overview

1.1. Overview

Walt Disney Imagineering (WDI) and Reedy Creek Energy Services (RCES) authorized Atkins North America, Inc. (Atkins) to develop a master utility plan (MUP) for the existing and planned developments in the Walt Disney World (WDW) West District. The master plan includes potable water, wastewater, and reclaimed water utilities.

The WDW West District project consists of approximately 309 acres located west of State Road 429 and east of County Road 545 (Figure 1-1). The projects limits are within Sections 19, 20, 21, and 28, Township 24, Range 27, in Orange County, Florida. The District is made up of four distinct parcels:

- Existing Flamingo Crossings (FC)
- Proposed Flamingo Crossings Planned Development Phase 1 - East Parcel (FC-1)
- Proposed Flamingo Crossings Planned Development Phase 2 - West Parcel (FC-2)
- Proposed Bear Island ($\mathrm{BI}-\mathrm{N}$ and $\mathrm{BI}-\mathrm{S}$)

The Bl parcel will not come online within the immediate future, however, the ultimate (long-term) scenario should accommodate for this development. Therefore, Bl flows and demands have been included in the long-term scenario for adequate infrastructure sizing.

Portions of the proposed project may be de-annexed from the Reedy Creek Improvement District (RCID) into Orange County. Each section listed in this MUP outlines which municipality will own each section of the system and the criteria that were used in the design. The information provided in this report for Orange County Utilities (OCU) includes infrastructure that will be transferred to OCU. OCU's review is limited to the OCU side of the interconnects. RCID demands and models for utility infrastructure will not be reviewed by OCU. All infrastructure part of this project were developed and reviewed by RCES, WDW and RCID.

This MUP involves design of potable water, wastewater, reclaimed water systems, and utility extensions to support the WDW West District short-term and long-term buildout. Applicable utility design criteria are listed in each appropriate section. The utiity points of connection, sizes, pressures, used were all obtained from RCES and OCU and are included in Appendix A. A schematic pipe layout is given for each proposed utility, including color-coded maps depicting the proposed ownership and pipe sizes. Flows were derived using the flow development program for the existing FC Parcel and pending units included in the proposed development plans for the FC-1, FC-2 and BI Parcels. These flows were calculated and distributed through each proposed parcel. RCID and OCU allow the use of ductile iron pipe or PVC pipe, with the exception of OCU wastewater collection systems where ductile iron pipe is not to be used for underground piping.

The proposed OCU mains to be constructed as dry lines and the existing RCID dry lines to be transferred to OCU are to remain privately owned and maintained until dedicated to OCU with future development. The mains shall be tested and inspected per the OCU Standards and Construction Specifications Manual at time of installation as well as at the time of dedication to OCU. Testing immediately prior to dedication shall be a separate project. A Bill of Sale and Maintenance Guarantee to OCU covering the installed mains for a period of one year following the final certificate of completion are requirements of the project clearing the system for use.

An approved land use plan has been provided in Appendix J, the plan has been approved by the BCC on $2 / 6 / 2018$ and the DRC.

2. Potable Water System

2.1. Introduction

The WDW West District is located along Western Way, east of County Road 545 and west of State Road 429. For the purpose of this MUP, the District will be served by RCID from the east (short-term scenario). Once OCU infrastructure is available along County Road 545, the District will be served by OCU from the west (long-term scenario). Parcels FC-1, FC-2, BI-N, and BI-S will be OCU customers and parcel FC will remain a RCID customer The section below outlines which municipality will own what parts of the potable water system and the criteria that were used in the MUP design. Figure 2-1 presents the potable water system infrastructure by owner required for the short-term scenario, while Figure 2-2 presents the potable water system infrastructure by owner required for the long-term scenario.

There are currently four existing RCID potable water main systems near the WDW West District project area. a 16 -inch water main running along Western Way ending at Flamingo Crossings Blvd.; a 12 -inch water main west of Flamingo Crossings Blvd. that ends at the western edge of the FC parcel; a 16 -inch water main south of Western Way that runs along Flamingo Crossings Blvd.; and a 12 -inch water main system on the FC parcel. The existing potable customers are connected to the RCID water distribution system

A hydraulic model was developed using Innovyze InfoWater Scenarios were created to analyze the short-term scenario in which potable water is served by RCID and for the long-term scenario in which the potable water is served by both RCID and OCU. The RCID tie-in pressure is 85 pounds per square inch (psi) at an elevation of 108 feet (provided by RCES) and the OCU tie-in pressure available along County Road 545 was estimated to be 56 psı at an elevation of 120 feet (see Appendix A for OCU tie-in pressure). The proposed pipes were sized based on OCU design criteria to provide a minimum desired residual pressure at the points of delivery. The sizing of the mains meet RCID standards in addition to OCU standards. Topographic elevations were imported into the model through available shapefiles and utilized in the hydraulic calculations.

The short-term scenario consists of development parcels west of State Road 429 FC, FC-1, FC-2, and Orange Lake parcels In this scenario, all parcels will be distributed potable water by RCID A 16 -inch water main is proposed beginning downstream of the potable water interconnect aiong Flamingo Crossings Boulevard, continuing across Flamingo Crossings Blvd., and a 24 -inch then continuing west to the County Road 545 connection point servicing the FC-2 parcel in the short-term scenario as depicted in Figure 2-1. The western boundary of this water main will be valved closed during the shor-term scenario after the future FC-2 parcel connection. RCID and OCU mains will be connected near Western Way and a wholesale water meter and interconnect will be installed The proposed 16 -inch and 24 -inch main will tie into the existıng 16 -inch RCID main and a gate valve is included at this location separating ownership, which will be open during the short term scenario. The existing 16 -inch water main will be disconnected just north of this connection. The potable water system will have three valves: 1.) Western Way and County Road 545. 2.) Western Way and FC-2 parcel; and 3.) on the 16 -inch RCID water main at the tie-in location to the existing 16 -inch water main (see Figure 2-1).

The long-term scenario will include Parcels FC, FC-1, FC-2, Orange Lake, BI-N. and BI-S. In this scenario, when OCU infrastructure becomes available, the gate valves located at Western Way and County Road 545, and FC-2 will be opened and the 24 -inch proposed water main will tie-in to the OCU water main along County Road 545. The gate valve located on the RCID 16-inch water main
(location of ownership separation) will be closed. Under this scenario, OCU will serve all parcels FC$1, \mathrm{FC}-2, \mathrm{BI}-\mathrm{N}$, and $\mathrm{BI}-\mathrm{S}$; while RCID will serve FC .

An interim construction scenario was also analyzed. The scenario is the subset of the short-term scenario with the intent to demonstrate the ability of the existing system and proposed temporary piping serving the FC-2 parcel to provide fire flow during constriction prior to other improvements. The system would be supplied by RCID and metering would be accomplished via local construction or hydrant meter assemblies. The intent is to allow site and vertical construction during the interim construction period

Figure 2-1 Potable Water System Infrastructure Short-Term Scenario

Legend

Potubla Water Valvas

- Gate Vaver (Chasea)
- - Gole vaver (cran)
- Interconnect Ascembly/Meiers (Opern)
rcio-Owned Booster Pump Location
- Patablo Proposed (RCID)
- Potable Exiating (RCIO tranater to OCU)
- Potatho Propased (OCU)
- Pocablo Existing (RCID)

OCU Ubility Service Arsa
ocu proposed Uitily Service Amer

1 inch $=926$ feet
^TKINS

2.2. Design Criteria

All pipes owned and maintained by RCID as shown in Figure 2-1 have been designed to their standards. Table 2-1 outlines the applicable RCID design criteria.

Table 2-1 RCID Potable Water System Design Criteria

Item	Recommended Criteria
Max day peaking factor	1.8
Peak hour peaking factor	3.0
Maximum velocity	8.0 feet per second (fps)
Hazen-Williams coefficient, ductile iron pipe	120
Hazen-Williams coefficient, PVC pipe	130
Minimum fire flow residual pressure	20 psi
Commercial fire flow requirement	2,000 gallons per minute (gpm)

All other public mains within the short-term and long-term scenarios are to be owned and maintained by OCU and designed per the OCU Standards and Construction Specifications Manual (with revisions issued in 2014) as outlined in Table 2-2.

Table 2-2 OCU Potable Water System Design Criteria

Item	Recommended Criteria
Max day peaking factor	2.0
Peak hour peaking factor	4.0
Maximum velocity	8.0 ps
Hazen-Williams coefficient, ductile iron pipe	120
Hazen-Williams coefficient, PVC pipe	130
Minimum fire flow residual pressure	20 psi (35 psi upstream of the FLMM/DDCVA)
Multifamily fire flow requirement	$2,000 \mathrm{gpm}$
Commercial/Industrial fire flow requirement	$2,000 \mathrm{gpm}$

2.3. Potable Water Demand Development

Potable water demands for parcels in the WDW West District for both the short-term and long-term scenarios are presented in Table 2-3.

Table 2-3 OCU Potabis Water Demand Develapment

2.4. Hydraulic Analysis

2.4.1. Fire Flow Analysis

A maximum day demand plus fire flow analysis was performed for each parcel to assure pressures and velocities are within acceptable ranges according to OCU standards mentioned previously. Based on Orange County Fire Marshal Code of Ordinances Sec 30-247, the minimum fire flow for commercial properties is $2,000 \mathrm{gpm}$ with a residual pressure of 20 psi in the system at delivery point (residual pressure of 35 psi will be required upstream of the meter for each parcel to account for minor losses through meter assembly); RCID requires a fire flow of $2,000 \mathrm{gpm}$ with a residual pressure of 20 psi at point of delivery; 35 psi upstream of meter assembly.

2.4.1.1. Short-Term Scenario

Appendix B provides a summary of the fire flow analysis results for the short-term scenario. During the short-term scenario, the recommended 35 psi residual pressure requirement upstream of the meter assembly is achieved on all parcels. RCID has plans to install a booster pump station at the location presented on Figure 2-1 to achieve this residual pressure.

Per agreement between RCID and OCU dated December 19, 2012 (2012 Letter Agreement) and amended on January $19^{\text {th }} 2018$, RCID is required to provide $2,710 \mathrm{gpm}$ at 45 psi (maximum daily demand plus fire flow) to serve customers in the Orange Lake development located on Flamingo Crossings Boulevard labeled connection point in Figure 2-3.

This maximum day demand and fire flow requirement per the agreement was allocated in the model at the Orange Lake connection point and the model was simulated Appendix B includes a fire flow analysis for the Orange Lake development during the short-term scenario.

2.4.1.2. Long-Term Scenario

During this scenario, the potable water system adequately supplies fire flow at $\mathrm{FC}-1, \mathrm{FC}-2, \mathrm{Bl}-\mathrm{N}, \mathrm{BI}-$ S and Orange Lake parcels. A comprehensive fire flow analysis for the long-term scenario is presented in Appendix B.

2.4.1.3. Short-Term Interim Construction Scenario

FC-1 and FC-2 parcel construction is estimated to begin in first quarter 2019. The timing of the construction of the booster pump station is estimated last quarter of 2019. Therefore, in the event the booster pump station is not online prior to FC-1 and FC-2 construction, additional scenarios were simulated to confirm adequate fire flows and pressures are provided during the "interim construction condition". During these scenarios existing pipes and proposed temporary pipes serving are used for delivery of demands and will be metered at the parcel hydrants. The scenarios simulated included the following:

1. FC-1. 2.000 gpm Fire Flow with maximum day demands only applied at the Orange Lake parcel.
2. FC-2: $2,000 \mathrm{gpm}$ Fire Flow with maximum day demands only applied at the Orange Lake parcel.
3. Orange Lake. 2.000 gpm Fire Flow with maximum day demands only applied at the Orange Lake parcel.

Modeling results for each scenario are provided in Appendix B, Table B-36 through Table B-44. these results indicate all residual pressure requirements are met. During this scenario the existing

16-inch piping along Flamingo Crossings Blvd. adequately supplies the required fire flow demand to FC-1, FC-2, and Orange Lake for construction activities. The intent is to allow vertical construction during this interim construction period. Certificates of occupancy would be contingent on certified completion of the booster pump station and all other site work permit requirements.

2.4.2. Peak Hour Analysis

A hydraulic analysis was performed to assure pressures and velocities are within acceptable ranges according to the standards mentioned previously during the peak hour scenario. In both the shortand long-term scenarios, the potable water system adequately supplies peak demands at each parcel per the design criteria presented in Section 2.2. The peak hour analysis for the short- and long-term scenarios are presented in Appendix B.

Peak hour analysis is not applicable during the short-term interim construction scenario.

2.5. System Summary

During the short-term scenario and short-term interim construction scenario, RCID will provide potable water for parcels FC, FC-1, FC-2, and Orange Lake. In the long-term scenario, ownership of the potable water system will be divided between RCID and OCU. RCID will own and maintain all potable water system infrastructure providing service to the FC parcel; while OCU will assume ownership of the utilities serving the FC-1, FC-2, and Orange Lake parcels. All water service connection shall be metered in accordance with the 2011 OCU Standards and Construction Specifications Manual (with revisions issued in 2014) Standards.

2.5.1. Fire Flow Analysis

2.5.1.1. Short Term Scenario

Parcels FC-1, FC-2 and Orange Lake are capable of achieving the required 35 psi residual pressure with a fire booster pump station. Figure $2-1$ illustrates the preliminary location for the fire booster pump station to accommodate fire flow demands and residual pressure requirements. The proposed booster pump stations will be owned and operated by RCID.

2.5.1.2. Long-Term Scenario

During the long-term scenario fire flow analysis, Piping is adequately sized for OCU to deliver the required residual pressure of 45 psi at the Orange Lake development per the amended Letter Agreement, dated January $19^{\text {th }}, 2018$.

2.5.1.3. Short-Term Interim Construction Scenario

During this scenario, existing piping is adequately sized to provide the fire flow needed for construction activities.

2.5.2. Peak Hour Analysis

in both the short- and long-term scenarios, the potable water system adequately supplies peak demands at each parcel per the design criteria presented in Section 2.2.

Peak hour analysis is not applicable to the short-term interim construction scenario.

3. Wastewater System

3.1. Introduction

As discussed previously, the WDW West District is east of County Road 545 and west of State Road 429. In the short-term scenario wastewater for the District will be served by RCID from the east. In the long-term scenario, once OCU infrastructure is available along County Road 545, wastewater for parcels located in the District (FC-1, FC-2, BI-N, BI-S, and Orange Lake) will be served by OCU from the west. Parcels $\mathrm{FC}-1, \mathrm{FC}-2, \mathrm{BI}-\mathrm{N}, \mathrm{BI}-\mathrm{S}$, and Orange Lake will be OCU customers. Figure 31 presents the wastewater system infrastructure by owner in the short-term scenario and Figure 32 presents the wastewater system infrastructure by owner in the long-term scenario. The section below outlines which municipality will own what parts of the wastewater system and the criteria that were used in the MUP design. BI will not come online in the short-term scenario, however, the ultimate (long-term) scenario includes Bl flows for adequate infrastructure sizing of the wastewater collection system

There are currently two existıng RCID wastewater force mains in the vicinity of WDW West District project area a 12 -inch force main running along Western Way, east of State Road 429 ending at the western edge of the FC parcel (the existing Flamingo Crossings lift station or LS-91); and a 12 -inch force main along Flamingo Crossings Blvd south of Western Way. There are also two existing gravity mains in the project area: a 10 -inch main along Flamingo Crossings Blvd. south of Western Way; and an 8 -inch/12-inch/15-inch gravity system within the FC parcel. The existing wastewater customers are currently connected to the RCID collection system.

A hydraulic model of the force main system was developed using Innovyze InfoWater. Two scenarios were created, one for the short-term in which all wastewater flow for FC, FC-1, FC-2, and Orange Lake is delivered to the RCID wastewater treatment facility (WWTF), and one for the long-term scenario in which the wastewater flow is divided between RCID and OCU The RCID tie-in pressure provided by RCES is 10 pounds per square inch (psi) and the OCU tie-in pressure along County Road 545 provided by OCU is 27 psi at an elevation of 120 feet (see Appendix A for OCU tie-in pressure). The long-term force main was sized based on OCU design criteria to provide a maximum velocity of 5 feet per second (fps).

The short-term scenario consists of FC, FC-1, FC-2, and Orange Lake parcels. In this scenario these parcels will be served by RCID. Flow from the Orange Lake and FC-1 developments will be directed through the existing 12 -inch Flamingo Crossings Blvd force main and the proposed 12 -inch force main along Western Way, flows will be discharged in the proposed manhole near LS-91. The 12inch force main along Flamingo Crossings Blvd. will be disconnected to separate ownership of the utility infrastructure between RCID and OCU (See Figure 3-1). FC-2 will discharge into the proposed 12 -inch force main along Western Way and flows will be directed to the proposed manhole near the LS-91 lift station, which will then flow by gravity to the LS-91 lift station. The wastewater from all parcels will then be pumped east to the RCID WWTF

The long-term scenario will include FC. FC-1, FC-2, $\mathrm{BI}-\mathrm{N}, \mathrm{Bl}-\mathrm{S}$, and Orange Lake. Similar to the short-term scenario, the existing LS-91 lift station will receive flows by gravity from parcel FC and will direct flows east to the RCID WWTF. The valve will be closed as shown in Figure 3-2 to direct wastewater flows west to the tie-in location along County Road 545. A 16-inch force main is proposed from $\mathrm{FC}-2$ to BI and a 20 -inch force main from BI to the tie-in location along County Road 545. Under this scenario, OCU will treat flows from parcels FC-1, FC-2, Orange Lake, and BI.

3.2. Gravity Collection System

Detailed wastewater flow development is outlined in Section 3.5. The OCU standard wastewater flow rate of $300 \mathrm{gpd} / E R \mathrm{U}$ was used for equivalent residential connections.

In the short-term and long-term scenanio, all existing gravity sewer west of State Road 429 will be owned and maintained by RCID and have been designed to their standards. The 10 -inch gravity main on the FC and FC-1 parcels will be plugged where the FC and FC-1 parcel boundaries meet. The remaining 10 -inch gravity main on the FC-1 parcel will be abandoned in place. All gravity sewer and the existing lift station within parcel FC will remain under the ownership of RCID.

3.2.1. RCID Gravity Collection System

The RCID gravity collection system will include all gravity sewer mains serving parcels east of State Road 429 and FC. Applicable RCID design criteria is outlined in Table 3-1.
Table 3-1 RCID Gravity Main Design Criteria

Item	Recommended Criteria
Minimum slope, 8-inch	0.40%
Minimum slope, 10-inch	0.28%
Minimum slope, 12-inch	0.22%
Minimum slope, 15-inch	0.15%

3.3. Lift Stations

In the short-term scenario there will be four (4) lift stations: FC-1, FC-2, LS-91 and Orange Lake. FC-1, FC-2 will be privately owned and operated. LS-91 will receive wastewater flows from all parcels during the short-term scenanio. In this scenario the LS-91 lift station will pump east to the RCID WWTF and will be owned and maintained by RCID.

In the long-term scenario there will be six (6) lift stations: FC-1, FC-2, LS-91, Orange Lake, BI-N and $\mathrm{BI}-\mathrm{S}$. The 12 -inch force main will be plugged prior to the proposed manhole that flows to LS-91 lift station and south of Western Way and Flagler Avenue. All wastewater flows will be directed west from the FC-1, FC-2, BI-N, BI-S, and Orange Lake parcels to the County Road 545 tie-in location. LS-91 lift station will continue to direct flows from Parcel FC east to the RCID WWTF.

3.3.1. RCID Lift Stations

During the shor-term scenario, parcels FC-1, FC-2 and Orange Lake will each have their own lift stations that will receive wastewater flows by gravity for each parcel respectively. The FC-1, FC-2 will be privately owned. The pumps included for each parcel lift station have been evaluated to confirm if they are capable of pumping under the short-term head conditions as well as the long-term head conditions. In conclusion, FC-1 and FC-2 lift station will require separate pumps for each the short-term and long-term head conditions. The pumps for each the short-term and long term are shown in the lift station calculations and pump curves included in Appendix \mathbf{E}.

LS-91 was designed based on a peak hourly flow (PHF) from all contributing parcels and will pump east to the RCID WWTF. All gravity wastewater mains and the existing lift station within parcel FC will remain under the ownership of RCID. Appendix H includes the LS-91 Lift Station pump curve.

3.3.2. OCU Lift Stations

OCU lift station design criteria is contingent upon the number of pumps required. Peak design flows less than $1,000 \mathrm{gpm}$ require two pumps while peak design flows between 1,000 and $2,500 \mathrm{gpm}$ require three pumps. Applicable OCU lift station design criteria is outlined in Table 3-2.

Table 3-2 OCU Lift Station Design Criteria

Item	Recommended Criteria	
	2 pumps	3 pumps
Number of wet wells	1	1
Wet well structure type	Precast	Precast
Piping (below or above ground)	Below	Above
SCADA	Yes	Yes
Biofilter	No	Yes
Generator	FDEP	Yes
Level control	Float ball	Float ball
SCADA panel	Type 2	Type 3

3.4. Force Mains

3.4.1. RCID Force Mains

In the short-term scenario the existing force main alignments can be seen in Figure 3-1. Applicable RCID design criteria is outlined in Table 3-3.

Table 3-3 RCID Force Main Design Criteria

Item	Recommended Criteria
Maximum headloss	5 feet/1,000 feet of pipe
Maximum velocity in force mains > 10-inch	7 fps
Maximum velocity in force mains ≤ 10-inch	5 fps
Hazen-Williams coefficient, ductile iron pipe	120
Hazen-Williams coefficient, PVC pipe	130

* All force mains that will be transferred to OCU will be designed per the OCU 2011 Design Criteria.

3.4.2. OCU Force Mains

A 12-inch force main is proposed along Western Way will direct flows from the FC-1, FC-2, Orange Lake lift stations to a manhole that will flow by gravity to the LS-91 lift station during the short-term. The 12 -inch force main was sized based on the ultimate build-out flows during the long-term scenario, which will be used in the long-term scenario to direct flows to the tie-in location at County Road 545 along with a 16 -inch force main from the FC-2 parcel to the BI parcels, and 20 -inch force main form BI parcels to the tie-in location. Refer to Figure 3-2 for the force main schematic.

Table 3-4 includes the recommended OCU criteria for the design of force mains. It must be noted that all OCU maintained force mains must flow at a minimum velocity of 2.5 fps and a maximum velocity of 5 fps .

Table 3-4 OCU Force Main Design Criteria

Item	Recommended Criteria
Minimum Pipe Diameter	4 inches
Minimum Velocity	2.5 fps
Maximum Velocity	5.0 fps at peak flow rate

3.5. Wastewater Flow Generation Development

Wastewater flow generation for parcels in the WDW West District for the short- and long-term scenarios are presented in and Table 3-5.

Table 2-s OCU Wastowator Flow Dovelopment

Preed	Description	Unit Type	Eat tinity	Pactor	Whatrwater ERC	No. Ot ERC':	Flow per Unik (gpd)	Avarnge Cally Flow 	Average Dally fiow (g pm)	Praking Factor	Peent Howr Flow (gpm)
FC-1	Retumimit over 100 soth	Sentio	2,000	0.1	300	200	30	60,000	42		123
F-1	Mulitumily - $2+$ Esdroome	Apantiment	1,32*	0.635	300	1.106	230	331,697	230		691
Toter flow from FG=1						1,208	280	381,097	272	3.0	818
FC-2	Reateurant over 100 caste	Sente	2,000	0.1	300	200	30	80,000	42		128
	Muliflemily - 2 + Eecroome	Apartment	1.330	0.003	300	1.133	280	339,884	238		708
Total Plow from FC.?						1,323	$2{ }^{\text {to }}$	300,304	271	3.0	288
B-Nam*	Restaurant over 100 eteth	Seate	1,000	0.1	300	100	30	30,000	21		73
	Hotel-1 Eadroom	Room	128	0.5	300	64	150	18.200	13		47
	Hotel - Sult	Reom	328	0.83	300	272	249	61,872	37		198
Totel Plow from ${ }_{\text {clill }}$ - North						458	425	130.872	11	3.5	31
$\mathrm{Bl}=\mathrm{Sow}{ }^{\text {a }}$	Routhurant over 100 eantio	Sation	1.000	0.1	300	100	30	30,000	21		73
	Motel - 1 Eodroom	Room	188	0.5	300	08	130	28.000	20		70
	Hotel - Suht	Room	328	0.35	300	272	248	11,672	37		100
Totes flow from ${ }^{\text {a }}$ - South						44	48	140,472	H	2.8	341
Oronge Latwe ${ }^{\text {min }}$								448,009	50.2	2.0	03
Orand Total						2843	1,418	7,498,874	1,098		3,20e

NOTE; The iff etation pumpe at FC-1 and FC-2 will be required to be upsiaed in the long term.

3.6. System Summary

3.6.1. Short-Term Scenario

As shown in Figure 3-1, the RCID portion of the wastewater collection and transmission system in the short-term scenario will consist of

- The existing gravity sewer serving parcel FC;
- The existing LS-91 lift station;
- The proposed 16 -inch force main discharging flows to the proposed manhole outside of LS91; and
- The existing 12 -inch force main from the LS-91 lift station along Western Way to the RCID WWTF

The portion of the collection system that OCU will own and maintain during the short term includes

- The existing 12 -inch force main along Flamingo Crossings Blvd.
- The proposed 12 -inch force main from the disconnected force main along Flaming Crossings Blvd and continues on Western Way to the FC-2 parcel (Note: BI will be constructed and served during the long-term scenario) and the 16 -inch force main from FC-2 to the BI parcels, and the 20 -inch from Bl to the tie-in location on County Road 545;

The following infrastructure will be privately owned and maintained:

- The proposed gravity sewer and lift station serving the FC-1 parcel; and
- The proposed gravity sewer and lift station serving the FC-2 parcel

3.6.1.1. Short-Term Scenario Hydraulic Model Results

The modeling analysis concluded that the long-term pumps for FC-1 and FC-2 cannot perform under the low head conditions during the short-term scenario In conclusion, specific pumps have been selected for this scenario that included the required lower head. They are included in Appendix E During the long term scenario these pumps will need to be replaced with higher head pumps

3.6.2. Long-Term Scenario

As shown in Figure 3-2, the RCID portion of the wastewater collection and transmission system in the long-term scenario will consist of:

- The existing gravity sewer serving parcel FC:
- The existing LS-91 lift station;
- The existing 12 -inch force mains from the LS-91 lift station along Western Way to the RCID WWTF: and
- The proposed 16 -inch FM discharging flow to the proposed MH outside of LS-91 lift station

The portion of the collection system that OCU will own and maintain during the long term includes:

- The existing 12 -inch force main along Flamingo Crossings Blva.
- The proposed 12 -inch and 16 -inch/20-inch force main along Western Way to the tie-in location on County Road 545;

The following infrastructure will be privately owned and maintained:

- The proposed gravity sewer and lift station serving the FC-1 parcel;
- The proposed gravity sewer and lift station serving the FC-2 parcel; and
- The proposed gravity sewer and lift stations serving the BI-N and BI-S parcel.

3.6.2.1. Long-Term Scenario Hydraulic Model Results

The maximum velocity in the proposed force mains flowing towards the OCU tie-in location at County Road 545 is 5.0 fps .

A summary of each proposed lift stations design points and downstream junctions can be seen below in Table 3-6.

Table 3-6 Wastewater Model Lift Station Summary

Parcel	Junction ID	Pump ID	PHF (gpm)	Pump Operating Point	Phase
FC-1	J98	FC_1_PMP1	816	846 gpm @ 31 tt	Short Term
		FC_1_PMP2		891 gpm @ 142 ft	Long Term
FC-2	$J 106$	FC_2_PMP1	833	856 gpm @ 14 ft	Short Term
		FC_2_PMP2		907 gpm @ 111 ft	Long Term
BI-N	J116	BI_N_PMP1	318	395 gpm @ 107 ft	Long Term
		BI_N_PMP2			
BI-S	J108	BI_S_PMP1	341	343 gpm @ 94 色	Long Term
		BI_S_PMP2			
Orange Lake	J34	-	900	-	Shor/Long

NOTE: Minor losses were not accounted for in the hydraulic models. These losses shall be accounted for in the lift station calculations at the time of the construction plan submittal.

4. Reclaimed Water System

4.1. Introduction

As previously discussed, the WDW West District is located along Western Way, east of County Road 545 and west of State Road 429. In the short-term scenario, reclaimed water for the District will be served by RCID from the east. In the long-term scenario, reclaimed water will be provided by OCU from the west Figure 4-1 presents the reclaimed water infrastructure by owner in the short-term scenario and Figure $4-2$ presents the reclaimed water infrastructure by owner in the long-term scenario. The section below outlines which municipality will own what parts of the reclaimed water system and the criteria that were used in the MUP design.

There are currently four existing reclaimed water mains near the project: a 12 -inch reclaimed water main along Western Way east of Flamingo Crossings Blvd.; an 8 -inch reclaimed water main west of Flamingo Crossings Blvd. that ends at the western edge of the FC parcel; an 8 inch reclaimed water main along Flamingo Crossings Blvd. south of Western Way; and an 8 -inch / 6 -inch reclaimed water main system on the FC parcel.

A hydraulic model was developed using Innovyze InfoWater. Two scenarios were created: one for the short-term in which all reclaimed water is served by RCID and one for the long-term scenario in which the reclaimed water service is divided between RCID and OCU. The tie-in pressure assumed for the RCID reclaimed distribution system is 83 psi (provided by RCES) and 56 psi for OCU tie-in pressure along County Road 545 (see Appendix A for OCU tie-in pressure). The pipes were sized to provide a minimum pressure of 35 psi at the points of delivery. per OCU Manual Section 2510 , Part 6B. Topographic elevations were imported into the model through available shapefiles and utilized in the hydraulic calculations

The short-term scenario consists of FC, FC-1, FC-2, and Orange Lake Parcels. $\mathrm{Bl}-\mathrm{N}$ and $\mathrm{BI}-\mathrm{S}$ will are not included in the short term scenario $\mathrm{BI}-\mathrm{N}$ and $\mathrm{BI}-\mathrm{S}$ will be constructed during the long-term scenario In this scenario, all parcels will be served by RCID. A booster pump station will be required to increase the pressure at the Orange Lake Development per the amended 2018 Letter Agreement (Appendix F).

The western boundary of the 20-inch reclaimed main will be valved closed during the short-term scenario after serving the FC-2 parcels from the east. RCID and OCU mains will be connected near Flamingo Crossings Boulevard and a wholesale reclaimed water meter and interconnect will be installed (See Figure 4-1). The existing 8-inch reclaimed water main along Flamingo Crossings Blvd will remain in place during the short-term scenario OCU will own and maintain the 8 -inch main along the FC-1 parcel, RCID will own and maintain the portion along the FC parcel.

The reclaimed water system will have valves in the following locations: 1.) Western Way and County Road 545, and 2.) Western Way and FC-2 parcel. (see Figure 4-1).

The long-term scenario will include parcels FC-1, FC-2, Orange Lake, BI-N, and BI-S. In this scenario, when OCU infrastructure becomes available, the gate valves located on Western Way at County Road 545 and FC-2 will be opened and the 20 -inch proposed reclaimed water main will tiein to the OCU reclaimed main along County Road 545 . Under this scenario, OCU will serve all parcels $\mathrm{FC}-1$, $\mathrm{FC}-2$ Orange Lake, $\mathrm{BI}-\mathrm{N}$. and $\mathrm{Bi}-\mathrm{S}$, while RCID will serve FC

4.2. Design Criteria

Please refer to Figure 4-1 and Figure 4-2 for pipe ownership. Applicable RCID design criteria is presented in Table 4-1. Detailed reclaimed water demands per parcel are outlined in Section 4.3.

Table 4-1 RCID Reclaimed Water Design Criteria

Item	Recommended Criteria
Maximum velocity	8 fps
Peaking Factor	3
Hazen-Williams coefficient for ductile iron	120
Hazen-Williams coefficient for PVC	130

Please refer to Figure 4-1 and Figure 4-2 for all public reclaimed water mains in the short-term and long-term scenarios that are to be owned and maintained by OCU and will be designed to the 2011 OCU Standards and Construction Specifications Manual (with revisions issued in 2014) Standards.

Applicable OCU design criteria is presented in Table 4-2.

Table 4-2 OCU Service Area Reclaimed Water Design Criteria

Item	Recommended Criterla
Maximum velocity, ductile iron pipe	8 fps
Maximum velocity, PVC pipe	5 fps
Peaking Factor	6
Hazen-Williams coefficient for ductile iron	120
Hazen-Williams coefficient for PVC	130

4.3. Reclaimed Water Demand Development

The long-term demands for the system were developed using the 2011 OCU Standards and Construction Specifications Manual (with revisions issued in 2014). The actual irrigable acres for the FC-1 and FC-2 parcels were taken from the design plans for the development on those parcels. For all other parcels it was assumed that 20% of each parcel was irrigable. The irrigation rate for all parcels utilized was 1 -inch per week, two days of irrigation per week for commercial parcels are listed below in Table 4-3.

Table 4-3 OCU Reclaimed Water Demand Development

Parcel	Junction ID	Land Use	Jurlsdiction		Irrigable Area (\%)	Irrigable Acres	Irrigation Rate (in/week)	Gallons f Week	Reciaim Average Dally De	Water nnual and	Peaking Factor	Reclaimed Water Peak Hourly Demand (gpm)
									GPD	GPM		
FC- 1 1	. 988	Multi- Family/Reta	OCU	80.3	-	13	1	351,895	175,948	122.0	6	733
FC- ${ }^{1}$	J24	MultiFamily/Retail	OCU	60.7	-	15	1	408,101	204,050	142.0	6	850
$\mathrm{BI}-\mathrm{N}^{2}$	J22	Tourist Commercial	OCU	49.6	20\%	-	1	269,352	134,676	93.5	6	561
Bl-S ${ }^{2}$	J20	Tourist Commercial	OCU	496	20\%	-	1	269,352	134,676	93.5	6	561
Grand Total								1,298,699	793,350	551		3,305

"Bear island parcel demands are not included in the short-term scenanio

1 The actual irrigable acres for the FC-1 and FC-2 parcels were taken from the design plens for the development of those parcels. Reclaimed water demands were calculated based on the irrigable acres
2 The irnigable area was estimated based on recommended 20% area per OCU, demand astimates should be confirmed when the conceptual layouts for each parcel are finalized
3 Per 2017 Amended Letter Agreement between RCID and OCU

4.4. System Summary

During the short-term scenario RCID will provide reclaimed water for all parcels in the WDW West District. In order for RCID to supply 600 gpm at 50 psi to the Orange Lake development per the 2012 Letter Agreement (amended in 2018), a booster pump station is required. A preliminary design point for the pump was determined to be $2,500 \mathrm{gpm} @ 75$ feet of head. This design point was based on the peak hour flows presented in Table 4-3. The booster pump will be located East of 429 on RCID property, near the potable water booster pump station presented in Section 2. The interconnect assembly was sized using an 8 -inch dual bidirectional backflow preventers, to decrease the amount of losses through this assembly a 12 -inch may be used

In the long-term scenario, ownership of the reclaimed water system will be divided between RCID and OCU. OCU will serve parcels $\mathrm{FC}-1, \mathrm{FC}-2$, Orange Lake, $\mathrm{BI}-\mathrm{N}$, and $\mathrm{BI}-\mathrm{S}$. RCID will serve the FC parcel. All peak system pressure requirements are met in the long term scenario with proposed infrastructure.

See Appendix D for detailed model results, for the short and long term scenarios

Appendix A. Tie-in Pressure Data

hty, whw Hatige imblyll, and

February 2. 2018
Mr. Kunal Nayee EI
Atkıns Group
482 south Keller Road
Orlando. Florida 32810

E-mail: Kunal.Nayeeotatkinsqlobal.com

Subject: Hydraulic Analysis for Connection to Collection/Transmission System Southern Service Area
Flamingo Crossings - Reclaimed - Revised Build Out

Dear Mr Nayee

We are responding to your request for hydraulic information for the above-mentioned project. located in the southwest corner of Section 21 Township 24 South. Range 27 East This analysis is based on a development having the following flows Please note that a review of the proposed development flows was not evaluated as part of this response. and that water and wastewater capacity is not reserved untll capital charges are paid pursuant to Orange County Code This letter includes boundary conditions to be used to perform preliminary designs for water and/or wastewater networks Please note that the connection elevations were assumed and that all utility elevations should be field verfied

Table 1. Estimated Flows - Buildout Conditions

Descnption	Reclaimed Water		Wastewater	
	Flow (gpm)	Peaking Factor	Flow (gpm)	Peaking Factor
Average Daily Flow				
Max Day Flow				
Peak Flow	$* 3,097$			
Fire Flow				
Fire Flow + MDF				

* Denotes flow provided by customer.

With respect to our reclaimed water system. assume a connection to a future reclaimed main along Avalon Road approximately 15 miles north of the intersection with Hartzog Road For design purposes assume a minimum workıng hydraulic grade of 250 feet will be maintained in the future reclaimed water main for flows up to the above referenced estimated flows This HGL is composed of 120 feet of elevation and 130 feet (56 psi) of pressure head

Please note that the hydraulic conditions presented above will be avallable after improvements to the reclaimed system are operational Note that these projects are outside of our 5 year CIP window

Please call me at 407-254-9917 if you have additional questions

Paul E Partlow. P E
Senior Engineer

February 2. 2018
Mr Kunal Nayee. E I
Atkins Group
482 south Keller Road
Orlando. Florida 32810

E-mail: Kunal.Naveo@atkinsglobal.com

Subject: Hydraulic Analysis for Connection to Collection/Transmission System Southern Service Area Flamingo Crossings - Water - Revised Build Out

Dear Mr Nayee

We are responding to your request for hydraulic information for the above-mentioned project. located in and around Section 21 Township 24 South, Range 27 East. This analysis is based on a development having the following flows Please note that a review of the proposed development flows was not evaluated as part of this response. and that water and wastewater capacity is not reserved until capital charges are paid pursuant to Orange County Code This letter includes boundary conditions to be used to perform prelıminary designs for water andfor wastewater networks

Table 1. Estimated Flows - Buildout Conditions

Description	Water		Wastewater	
	Flow (gpm)	Peaking Factor	Flow (gpm)	Peaking Factor
Average Daily Flow	1,216	1.0		
Max Day Flow	2,432	2.0		
Peak Flow	4,864	4.0		
Fire Flow	2,000			
Fire Flow + MDF	4,432			

* Denotes flow provided by customer.

With respect to our water system, we assumed a connection to the existing 24 -inch water main along Avalon Road approximately 15 miles north of the intersection with Hartzog Road According to our model, for design purposes assume a minimum working hydraulic grade of 250 feet will be maintained in the existing water main for flows up to the above referenced Estımated Flows This HGL is composed of 120 feet of elevation and 130 feet (56 psi) of pressure head Please note that the connection elevation was assumed and that all water main elevations should be field verified
Please note that these pressure and demand conditions assume that the planned Malcolm Road WSF is operational, all major loops within the Horizons West Developments are in service, and that a future storage re-pump facility in the vicinity of Avalon and Seidel Roads is in operation. These flows will NOT be avallable until this condition is met
Sincerely.

[^0]February 5. 2018
Mr Kunal Nayee. EI
Atkins Group
482 south Keller Road
Orlando, Florida 32810

E-mail: Kunal.Nayoe@atkinsglobal.com

Subject: Hydraulic Analysis for Connection to Collection/Transmission System Southern Service Area
Flamingo Crossings - Wastewater - Revised Build Out

Dear Mr Nave

We are responding to your request for hydraulic information for the above-mentioned project. located in the southwest corner of Section 21 Township 24 South. Range 27 East This analysis is based on a development having the following flows. Please note that a review of the proposed development flows was not evaluated as part of this response, and that water and wastewater capacity is not reserved untIl capital charges are paid pursuant to Orange County Code This letter includes boundary conditions to be used to perform preliminary designs for water and/or wastewater networks Please note that the connection elevations were assumed and that all utility elevations should be field verified

Table 1. Estimated Flows - Buildout Conditions

Descnption	Water		Wastewater	
	Flow (gpm)	Peaking Factor	Flow (gm)	Peaking Factor
Average Daily Flow			1,041	1.0
Max Day Flow				2.603
Peak Flow			2,6	
Fire Flow				
Fire Flow + MDF				

Denotes flow provided by customer
With respect to our wastewater system. we assumed a connection to a proposed 20 inch force main along Avalon Road approximately 15 miles north of the intersection with Hertzog Road This force main will flow to a future Avalon Road master pumping station located in the general vicinity of N28 24.9, W81 380 with an assumed outfall based on ground elevation of 130 feet. According to our model, the hydraulic grade line at your point of connection for flows up to the above referenced estimated flows is 182 feet. which is composed of 120 feet of elevation and 62 feet (27 psi) of pressure head
Please note that the hydraulic conditions presented above will be available after the new water reclamation facility and proposed Avalon Road master pump station is operational Note that these projects are outside of our 5 year CIP window.

Please call me at 407-254-9917 if you have additional questions
Sincerely.

Paul E Partlow. PE
Senior Engineer

Appendix B. Potable Water

Table B-1 Short-Term Scenario Orange Lake Fire Flow Results - Junction Report

10	Demand (gpm)	Elevation (fi)	Head (ti)	Pressure (psi]
J98	0	111	201	39.0a
J96	0	111	202	39.5
J32	0	111	204	40.3
J94	634	120	215	41.3
J78	0	113	211	42.5
J86	0	116	216	43.1
J88	0	114	218	45.1
J66	2,710	106	210	45.2
J64	0	114	223	47.2
J18	0	114	227	49.0
J118	0	114	227	49.1
J120	0	114	227	49.1
J56	0	107	223	50.2
J54	432	109	227	51.0
J22	0	105	223	51.1
J34	648	104	223	51.4
J116	0	111	231	51.8
J100	0	111	231	52.0
J20	0	102	223	52.4
J110	0	111	234	53.4
J52	0	102	227	54.2
J16	392	98	227	56.1
J114	0	98	227	56.1
J38	94	96	227	56.9
J46	0	95	272	76.8
J50	0	95	281	80.7
J10	0	105	300	84.6
J40	0	97	297	86.8
J30	-	-	-	-
J36	-	-	-	-
J24	-	-	-	-
J112	-	-		-

a. Denotes critical node during fire flow simulation

Table B-2 Short-Term Scenario Orange Lake Fire Flow Results - Reservoir Report

ID	Flow (gpm)	Head (ft)	Description
RES9002	$-4,910$	304	HGL provided by RCID

Table B-3 Short-Term Scenario Orange Lake Fire Flow Results - Pipe Report

ID	Owner	From Node	To Node	Length (f)	Diameter (in)	Roughness	$\begin{aligned} & \text { Flow } \\ & \text { (gpm) } \end{aligned}$	$\begin{aligned} & \text { Velocity } \\ & \text { (ft's) } \end{aligned}$	Headloss (ft)
P11	RCID	J10	J40	212	16	120	4,910	7.8	2.9
P117	OCU	J86	J78	990	16	120	2,710	4.3	4.5
P121	OCU	J88	J86	367	16	120	3,344	5.3	2.5
P13	Private	J114	J16	376	16	120	392	0.6	0.1
P133	Private	J86	J94	184	12	120	634	1.8	0.2
P137	RCID	J96	J18	271	16	120	0	0.0	0.0
P149	RCID	J96	J98	102	16	120	4,424	7.1	1.2
P15	RCID	J18	J52	1225	12	120	162	0.5	0.1
P155	RCID	J100	J116	50	16	120	4,424	7.1	0.6
P159	RCID	J110	J100	33	16	120	4,424	7.1	3.1
P17	OCU	J20	J22	2631	24	120	0	0.0	0.0
P177	RCID	J114	J32	2071	16	120	4,424	7.1	23.5
P189	RCID	J116	J120	285	16	120	4,424	7.1	3.2
P191	RCID	$J 98$	U7014	57	16	120	4,424	7.1	0.7
P193	RCID	U7014	J110	45	16	120	4,424	7.1	0.5
P195	RCID	J118	J18	408	16	120	432	0.7	0.1
P197	RCID	J120	$J 64$	459	16	120	3,992	6.4	4.3
P199	RCID	J120	J118	109	12	120	432	1.2	0.1
P23	RCID	J18	J54	1461	12	120	270	0.8	0.4
P29	Private	J20	J34	329	16	120	648	1.0	0.1
P35	Private	J114	J38	231	12	120	93.6	0.3	0.0
P37	RCID	RES9002	J10	291	16	120	4,910	7.8	4.0
P39	RCID	J40	J50	1171	16	120	4,910	7.8	16.2
P43	RCID	J46	J114	3242	16	120	4,910	7.8	44.7
P47	RCID	J50	J46	662	16	120	4,910	7.8	9.1
P51	RCID	J32	J96	155	16	120	4,424	7.1	1.8
P57	RCID	J52	J54	2515	12	120	162	0.5	0.3
P59	OCU	J56	J20	1408	24	120	648	0.5	0.1
P63	OCU	J56	J64	1903	24	120	-648	0.5	0.1
P67	OCU	J64	J88	735	16	120	3,344	5.3	5.0
P69	OCU	J78	J66	151	16	120	2,710	4.3	0.7
P31	-	-	-	-	-	-	-	-	-
P25	-	-	-	-	-	-	-	-	-
P19	-	-	-	-	-	-	-	-	-
P183	-	-	-	-	-	-	-	-	-
P173	-	-	-	-	-	-	-	-	-
P61	-	-	-	-	-	-	-	-	-
P143	-	-	-	-	-	-	-	-	-

Table B-4 Short-Term Fire Flow analysis

ID	Static Demand (gpm)	Static Pressure (psi)	Static Head (f)	Fire-Flow Demand (gpm)	Residual Pressure (psi)	Available Flow at Hydrant (gpm)	Available Flow Pressure (psi)	Critical Pipe ID	Critical Pipe Velocity (fis)
J34	648	86.9	304.5	2,000	50	3,268	35.0	P29	5.2
J66	710	85.3	302.9	2,000	45	3,099	35.0	P69	4.9
J94	634	79.4	303.2	2,000	40	2,820	35.3	P133	8.0

Table B-5 Short-Term Scenario FC-1 Fire Flow Results - Junction Report

ID	Demand (gpm)	Elevation (ft)	Head (ft)	Pressure (psi)
J98	0	111	201	39.0a
J96	0	111	202	39.5
J94	2,634	120	212	40.0
J32	0	111	204	40.3
J86	0	116	216	43.1
J78	0	113	215	44.3
J88	0	114	218	45.1
J64	0	114	223	47.2
J66	710	106	215	47.3
J18	0	114	227	49.0
J118	0	114	227	49.1
J120	0	114	227	49.1
J56	0	107	223	50.2
J54	432	109	227	51.0
J22	0	105	223	51.1
J34	648	104	223	51.4
J116	0	111	231	51.8
J100	0	111	231	52.0
J20	0	102	223	52.4
J110	0	111	234	53.4
J52	0	102	227	54.2
J16	392	98	227	56.1
J114	0	98	227	56.1
J38	94	96	227	56.9
J46	0	95	272	76.8
J50	0	95	281	80.7
J10	0	105	300	84.6
J40	0	97	297	86.8
J30	-	-	-	-
J36	-	-	-	-
J24	-	-	-	-
J112	-	-	-	-

a. Denotes critical node during fire flow simulation

Table B-6 Short-Term Scenario FC-1 Fire Flow Results - Reservoir Report

ID	Description	Flow (gpm)	Head (ft)
RES9002	HGL provided by RCID	$-4,910$	304

Table B-7 Short-Term Scenario FC-1 Fire Flow Results - Pipe Report

ID	Owner	From Node	To Node	Length (ft)	Diameter (in)	Roughness	Flow (gpm)	Velocity (ft/s)	Headloss (ft)
P11	RCID	J10	J40	212	16	120	4,910	7.8	2.9
P117	OCU	J86	J78	990	16	120	710	1.1	0.4
P121	OCU	J88	J86	367	16	120	3,344	5.3	2.5
P13	Private	J114	J16	376	16	120	392	0.6	0.1
P133	Private	J86	J94	184	12	120	2,634	7.5	3.3
P137	RCID	J96	J18	271	16	120	0	0.0	0.0
P149	RCID	J96	J98	102	16	120	4,424	7.1	1.2
P15	RCID	J18	J52	1,225	12	120	162	0.5	0.1
P155	RCID	J100	J116	50	16	120	4,424	7.1	0.6
P159	RCID	J110	J100	33	16	120	4,424	7.1	3.1
P17	OCU	J20	J22	2,631	24	120	0	0.0	0.0
P177	RCID	J114	J32	2,071	16	120	4,424	7.1	23.5
P189	RCID	J116	J120	285	16	120	4,424	7.1	3.2
P191	RCID	J98	U7014	57	16	120	4,424	7.1	0.7
P193	RCID	U7014	J110	45	16	120	4,424	7.1	0.5
P195	RCID	J118	J18	408	16	120	432	0.7	0.1
P197	RCID	J120	J64	459	16	120	3,992	6.4	4.3
P199	RCID	J120	J118	109	12	120	432	1.2	0.1
P23	RCID	J18	J54	1,461	12	120	270	0.8	0.4
P29	Private	J20	J34	329	16	120	648	1.0	0.1
P35	Private	J114	J38	231	12	120	94	0.3	0.0
P37	RCID	RES9002	J10	291	16	120	4,910	7.8	4.0
P39	RCID	J40	J50	1,171	16	120	4,910	7.8	16.2
P43	RCID	J46	J114	3,242	16	120	4,910	7.8	44.7
P47	RCID	J50	J46	662	16	120	4,910	7.8	9.1
P51	RCID	J32	J96	155	16	120	4,424	7.1	1.8
P57	RCID	J52	J54	2,515	12	120	162	0.5	0.3
P59	OCU	J56	J20	1,408	24	120	648	0.5	0.1
P63	OCU	J56	J64	1,903	24	120	-648	0.5	0.1
P67	OCU	J64	J88	735	16	120	3,344	5.3	5.0
P69	OCU	J78	J66	151	16	120	710	1.1	0.1
P31	-	-	-	-	-	-	-	-	-
P25	-	-	-	-	-	-	-	-	-
P19	-	-	-	-	-	-	-	-	-
P183	-	-	-	-	-	-	-	-	-
P173	-	-	-	-	-	-	-	-	-
P61	-	-	-	-	-	-	-	-	-

ID	Owner	From Node	To Node	Length (ft)	Diameter (in)	Roughness	Flow (gpm)	Velocity (fts)	Headloss (ft)
P143	-	-	-	-	-	-	-	-	-

Table B-8 Short-Term Scenario FC-2 Fire Flow Results - Junction Report

ID	Demand (gpm)	Elevation (ft)	Head (ft)	Pressure (psi)
J98	0	111	201	39.0a
J96	0	111	202	39.5
J32	0	111	204	40.3
J94	634	120	221	43.9
J86	0	116	222	45.8
J88	0	114	222	46.8
J78	0	113	221	46.9
J64	0	114	223	47.2
J18	0	114	227	49.0
J118	0	114	227	49.1
J120	0	114	227	49.1
J56	0	107	222	49.8
J66	710	106	221	49.9
J34	2,648	104	220	50.1
J22	0	105	221	50.3
J54	432	109	227	51.0
J20	0	102	221	51.6
J116	0	111	231	51.8
J100	0	111	231	52.0
J110	0	111	234	53.4
J52	0	102	227	54.2
J16	392	98	227	56.1
J114	0	98	227	56.1
J38	94	96	227	56.9
J46	0	95	272	76.8
J50	0	95	281	80.7
J10	0	105	300	84.6
J40	0	97	297	86.8
J30	-	-	-	-
J36	-	\bullet	\bullet	-
J24	-	-	-	-
J112	-	-	-	-

a. Denotes critical node during fire flow simulation

Table B-9 Short-Term Scenario FC-2 Fire Flow Results - Reservoir Report

ID	Description	Flow (gpm)	Head (ft)
RES9002	HGL provided by RCID	$-4,910$	304

Table B-10 Short-Term Scenario FC-2 Fire Flow Results - Pipe Report

ID	Owner	From Node	To Node	Length (ft)	Diamete r (In)	Roughness	Flow (gpm)	Velocity (ft/s)	Headloss (f)
P11	RCID	J10	J40	212	16	120	4,910	7.8	2.9
P117	OCU	J86	J78	990	16	120	710	1.1	0.4
P121	OCU	J88	J86	367	16	120	1,344	2.1	0.5
P13	Private	J114	J16	376	16	120	392	0.6	0.1
P133	Private	J86	J94	184	12	120	634	1.8	0.2
P137	RCID	J96	J18	271	16	120	0	0.0	0.0
P149	RCID	J96	J98	102	16	120	4,424	7.1	1.2
P15	RCID	J18	$J 52$	1,225	12	120	162	0.5	0.1
P155	RCID	J100	J116	50	16	120	4,424	7.1	0.6
P159	RCID	J110	J100	33	16	120	4,424	7.1	3.1
P17	OCU	J20	J22	2,631	24	120	0	0.0	0.0
P177	RCID	J114	J32	2,071	16	120	4,424	7.1	23.5
P189	RCID	J116	J120	285	16	120	4,424	7.1	3.2
P191	RCID	J98	U7014	57	16	120	4,424	7.1	0.7
P193	RCID	U7014	J110	45	16	120	4,424	7.1	0.5
P195	RCID	J118	J18	408	16	120	432	0.7	0.1
P197	RCID	J120	J64	459.	16	120	3,992	6.4	4.3
P199	RCID	J120	J118	109	12	120	432	1.2	0.1
P23	RCID	J18	J54	1,461	12	120	270	0.8	0.4
P29	Private	J20	J34	329	16	120	2,648	4.2	1.5
P35	Private	J114	J38	231	12	120	94	0.3	0.0
P37	RCID	RES9002	J10	291	16	120	4,910	7.8	4.0
P39	RCID	J40	J50	1,171	16	120	4,910	7.8	16.2
P43	RCID	J46	J114	3,242	16	120	4,910	7.8	44.7
P47	RCID	J50	J46	662	16	120	4.910	7.8	9.1
P51	RCID	J32	J96	155	16	120	4,424	7.1	1.8
P57	RCID	J52	$J 54$	2,515	12	120	162	0.5	0.3
P59	OCU	J56	J20	1,408	24	120	2,648	1.9	0.9
P63	OCU	J56	J64	1,903	24	120	-2,648	1.9	1.2
P67	OCU	J64	J88	735	16	120	1,344	2.1	0.9
P69	OCU	J78	J66	151	16	120	710	1.1	0.1
P31	-	-	-	-	-	-	-	-	-
P25	-	-	-	-	-	-	-	-	-
P19	-	-	-	-	-	-	-	-	
P183	-	-	-	-	-	-	-	-	-
P173	-	-	-	-	-	-	-	-	-
P143	-	-	-	-	-	-	-	-	-
P61	-	-		-	-	\bigcirc	-	-	\cdot

[^1]Table B-11 Long-Term Scenario Orange Lake Fire Flow Results - Junction Report

ID	Demand (gpm)	Elevation (ft)	Head (t)	Pressure (psi)
J94	634	120	230	47.6a
J78	0	113	225	48.7
J86	0	116	230	49.4
J88	0	114	233	51.4
J66	2,710	106	225	51.5
J64	0	114	237	53.5
J56	0	107	239	57.3
J34	648	104	240	59.1
J20	0	102	241	60.1
J30	212	105	244	60.2
J36	228	105	244	60.2
J22	0	105	244	60.2
J24	0	102	246	62.4
J112	0	103	247	62.4
J118	0	114	302	81.4
J120	0	114	302	81.4
J18	0	114	302	81.4
J116	0	111	302	82.7
J110	0	111	302	82.7
J100	0	111	302	82.7
J 98	0	111	302	82.7
J96	0	111	302	82.7
J32	0	111	302	82.7
J54	432	109	302	83.4
J10	0	105	304	86.3
J52	0	102	302	86.6
J16	191	98	302	88.5
J114	0	98	302	88.5
J38	76	96	302	89.4
J40	0	97	304	89.8
J46	0	95	303	90.3
J50	0	95	304	90.4

a. Denotes critical node during fire flow simulation

Table B-12 Long-Term Scenario Orange Lake Fire Flow Results - Reservoir Report

ID	Flow (gpm)	Head (ft)	Comment
RES9002	-698	304	Source: RCID 108' Elevation and pressure 85 psi
RES9004	$-4,432$	250	Source: OCU 120' elevation and 56 psi

Table B-13 Long-Term Scenario Orange Lake Fire Flow Results - Pipe Report

ID	Owner	From Node	To Node	Length (t)	Diameter (in)	Roughness	Flow (gpm)	Velocity (f/s)	Headioss (f)
P11	RCID	J10	J40	212	16	120	698	1.1	0.1
P117	OCU	J86	J78	990	16	120	2,710	4.3	4.5
P121	OCU	J88	J86	367	16	120	3,344	5.3	2.5
P13	Private	J114	J16	376	16	120	191	0.3	0.0
P133	Private	J86	J94	184	12	120	634	1.8	0.2
P137	RCID	J96	J18	271	16	120	432	0.7	0.0
P149	RCID	J96	J98	102	16	120	0	0.0	0.0
P15	RCID	J18	J52	1,225	12	120	162	0.5	0.1
P155	RCID	J100	J116	50	16	120	0	0.0	0.0
P159	RCID	J110	J100	33	16	120	0	0.0	0.0
P17	OCU	J20	J22	2,631	24	120	-3,992	2.8	3.4
P173	OCU	$J 112$	RES9004	1,922	24	120	-4,432	3.14	3.04
P177	RCID	J114	J32	2,071	16	120	432	0.7	0.3
P183	OCU	J24	J112	655	24	120	-4,432	3.1	1.0
P189	RCID	J116	J120	285	16	120	0	0.0	0.0
P19	OCU	J22	J24	1,193	24	120	-4,432	3.1	1.9
P191	RCD	J98	U7014	57	16	120	0	0.0	0.0
P193	RCID	U7014	J110	45	16	120	0	0.0	0.0
P195	RCID	J118	J18	408	16	120	0	0.0	0.0
P197	RCID	J120	J64	459	16	120	0	0.0	0.0
P199	RCID	J120	J118	109	12	120	0	0.0	0.0
P23	RCID	J18	J54	1,461	12	120	270	0.8	0.4
P25	Private	J22	J30	524	16	120	212	0.3	0.0
P29	Private	J20	J34	329	16	120	648	1.0	0.1
P31	Private	J22	J36	344	16	120	228	0.4	0.0
P35	Private	J114	J38	231	12	120	76	0.2	0.0
P37	RCID	RES9002	J10	291	16	120	698	1.1	0.1
P39	RCID	J40	J50	1,171	16	120	698	1.1	0.4
P43	RCID	J46	J114	3,242	16	120	698	1.1	1.2
P47	RCID	J50	J46	662	16	120	698	1.1	0.3
P51	RCID	J32	J96	155	16	120	432	0.7	0.0

ID	Owner	From Node	To Node	Length (t)	Diameter (in)	Roughness	Flow (gpm)	Velocity (fls)	Headloss (t)
P57	RCID	J52	J54	2,515	12	120	162	0.5	0.3
P59	OCU	J56	J20	1,408	24	120	-3,344	2.4	1.3
P63	OCU	J56	J64	1,903	24	120	3,344	2.4	$1: 8$
P67	OCU	$J 64$	J88	735	16	120	3,344	5.3	5.0
P69	OCU	J78	J66	151	16	120	2,710	4.3	0.7

Table B-14 Long-Term Scenario FC-1 Fire Flow Results - Junction Report

ID	Demand (g pm)	Elevation (ft)	Head (ft)	Pressure (psi)
J94	2,634	120	227	46.3a
J86	0	116	230	49.4
J78	0	113	230	50.6
J88	0	114	233	51.4
J64	0	114	237	53.5
J66	710	106	230	53.6
J56	0	107	239	57.3
J34	648 .	104	240	59.1
J20	0	102	241	60.1
J30	212	105	244	60.2
J36	228	105	244	60.2
J22	0	105	244	60.2
J24	0	102	246	62.4
J112	0	103	247	62.4
J118	0	114	302	81.4
J120	0	114	302	81.4
J18	0	114	302	81.4
J116	0	111	302	82.7
J110	0	111	302	82.7
J100	0	111	302	82.7
J98	0	111	302	82.7
J96	0	111	302	82.7
J32	0	111	302	82.7
J54	432	109	302	83.4
J10	0	105	304	86.3
J52	0	102	302	86.6
J16	191	98	302	88.5
J114	0	98	302	88.5
J38	76	96	302	89.4
J40	0	97	304	89.8

ID	Demand (gpm)	Elevation (ft)	Head (ft)	Pressure (psi)
J 46	0	95	303	90.3
J 50	0	95	304	90.4

a. Denotes critical node during fire flow simulation

Table B-15 Long-Term Scenario FC-1 Fire Flow Results - Reservoir Report

ID		Flow (gpm)	Head (ft)
RES9002	108' Elevation and pressure 85 psi	-698	304
RES9004	120' elevation and 56 psi	$-4,432$	250

Table B-16 Long-Term Scenario FC-1 Fire Flow Results - Pipe Report

ID	Owner	From Node	To Node	Length (f)	Diameter (In)	Roughness	Flow (gpm)	Velocity (flts)	Headloss (ft)
P11	RCID	J10	J40	212	16	120	698	1.1	0.1
P117	OCU	J86	J78	990	16	120	710	1.1	0.4
P121	OCU	J88	J86	367	16	120	3,344	5.3	2.5
P13	Private	J114	J16	376	16	120	191	0.3	0.0
P133	Private	J86	J94	184	12	120	2,634	7.5	3.3
P137	RCID	J96	J18	271	16	120	432	0.7	0.0
P149	RCID	J96	J98	102	16	120	0	0.0	0.0
P15	RCID	J18	J52	1,225	12	120	162	0.5	0.1
P155	RCID	J100	J116	50	16	120	0	0.0	0.0
P159	RCID	J110	J100	33	16	120	0	0.0	0.0
P17	OCU	J20	J22	2,631	24	120	$-3,992$	2.8	3.4
P173	OCU	J112	RES9004	1,922	24	120	$-4,432$	3.1	3.0
P177	RCID	J114	J32	2,071	16	120	432	0.7	0.3
P183	OCU	J24	J112	655	24	120	$-4,432$	3.1	1.0
P189	RCID	J116	J120	285	16	120	0	0.0	0.0
P19	OCU	J22	J24	1,193	24	120	$-4,432$	3.1	1.9
P191	RCD	J98	U7014	57	16	120	0	0.0	0.0
P193	RCID	U7014	J110	45	16	120	0	0.0	0.0
P195	RCID	J118	J18	408	16	120	0	0.0	0.0
P197	RCID	J120	J64	459	16	120	0	0.0	0.0
P199	RCID	J120	J118	109	12	120	0	0.0	0.0
P23	RCID	J18	J54	1,461	12	120	270	0.8	0.4
P25	Private	J22	J30	524	16	120	212	0.3	0.0
P29	Private	J20	J34	329	16	120	648	1.0	0.1
P31	Private	J22	J36	344	16	120	228	0.4	0.0
P35	Private	J114	J38	231	12	120	76	0.2	0.0

Walt Disney World West District Water, Wastewater and Reclaimed Water Master Utility Plan | Version 6.0 | September 2018 Page 148

ID	Owner	From Node	To Node	Length (ft)	Diameter (in)	Roughness	Flow (gpm)	Velocity (fts)	Headloss (ft)
P37	RCID	RES9002	J10	291	16	120	698	1.1	0.1
P39	RCID	J40	J50	1,171	16	120	698	1.1	0.4
P43	RCID	J46	J114	3,242	16	120	698	1.1	1.2
P47	RCID	J50	J46	662	16	120	698	1.1	0.3
P51	RCID	J32	J96	155	16	120	432	0.7	0.0
P57	RCID	J52	J54	2,515	12	120	162	0.5	0.3
P59	OCU	J56	J20	1,408	24	120	-3,344	2.4	1.3
P63	OCU	J56	J64	1,903	24	120	3,344	2.4	1.8
P67	OCU	J64	J88	735	16	120	3,344	5.3	5.0
P69	OCU	J78	J66	159	16	120	710	1.1	0.1

Table B-17 Long-Term Scenario FC-2 Fire Flow Results - Junction Report

ID	Demand (gpm)	Elevation (ft)	Head (ft)	Pressure (psi)
J94	634	120	238	51.3a
J86	0	116	239	53.1
J88	0	114	239	54.2
J78	0	113	238	54.3
J64	0	114	240	54.6
J66	710	106	238	57.3
J56	0	107	240	57.8
J34	2,648	104	239	58.6
J20	0	102	241	60.1
J30	212	105	244	60.2
J36	228	105	244	60.2
J22	0	105	244	60.2
J24	0	102	246	62.4
J112	0	103	247	62.4
J118	0	114	302	81.4
J120	0	114	302	81.4
J18	0	114	302	81.4
J116	0	111	302	82.7
J110	0	111	302	82.7
J100	0	111	302	82.7
J98	0	111	302	82.7
J96	0	111	302	82.7
J32	0	111	302	82.7
J54	432	109	302	83.4
J10	0	105	304	86.3
J52	0	102	302	86.6

Walt Disney World West District Water, Wastewater and Reclaimed Water Master Utility Plan | Version 6.0 | September 2018 Page | 49

ID	Demand (gpm)	Elevation (ft)	Head (ft)	Pressure (psi)
J16	191	98	302	88.5
J114	0	98	302	88.5
J38	76	96	302	89.4
J40	0	97	304	89.8
J46	0	95	303	90.3
J50	0	95	304	90.4

a. Denotes critical node during fire flow simulation

Table B-18 Long-Term Scenario FC-2 Fire Flow Results - Reservoir Report

ID		Flow (gpm)	Head (ft)
RES9002	108^{\prime} Elevation and pressure 85 psi	-698	304
RES9004	120^{\prime} elevation and 56 psi	$-4,432$	250

Table B-19 Long-Term Scenario FC-2 Fire Flow Results - Pipe Report

ID	Owner	From Node	To Node	Length (ft)	Diameter (in)	Roughness	Flow (gpm)	Velocity (ftls)	Headloss (ft)
P11	RCID	J10	J40	212	16	120	698	1.1	0.1
P117	OCU	J86	J78	990	16	120	710	1.1	0.4
P121	OCU	J88	J86	367	16	120	1,344	2.1	0.5
P13	Private	J114	J16	376	16	120	191	0.3	0.0
P133	Private	J86	J94	184	12	120	634	1.8	0.2
P137	RCID	J96	J18	271	16	120	432	0.7	0.0
P149	RCID	J96	J98	102	16	120	0	0.0	0.0
P15	RCID	J18	J52	1,225	12	120	162	0.5	0.1
P155	RCID	J100	J116	50	16	120	0	0.0	0.0
P159	RCID	J110	J100	33	16	120	0	0.0	0.0
P17	OCU	J20	J22	2,631	24	120	-3,992	2.8	3.4
P173	OCU	J112	RES9004	1,922	24	120	-4,432	3.1	3.0
P177	RCID	J114	J32	2,074	16	120	432	0.7	0.3
P183	OCU	J24	J112	655	24	120	-4,432	3.1	1.0
P189	RCID	J116	J120	285	16	120	0	0.0	0.0
P19	OCU	J22	J24	1,193	24	120	-4,432	3.1	1.9
P191	RCD	J98	U7014	57	16	120	0	0.0	0.0
P193	RCID	U7014	J110	45	16	120	0	0.0	0.0
P195	RCID	J1.18	J18	408	16	120	0	0.0	0.0
P197	RCID	J120	J64	459	16	120	0	0.0	0.0
P199	RCID	J120	J118	109	12	120	0	0.0	0.0
P23	RCID	J18	J54	1,461	12	120	270	0.8	0.4
P25	Private	J22	J30	524	16	120	212	0.3	0.0
P29	Private	J20	J34	329	16	120	2,648	4.2	1.5
P31	Private	J22	J36	344	16	120	228	0.4	0.0
P35	Private	J114	J38	231	12	120	76	0.2	0.0
P37	RCID	RES9002	J10	291	16	120	698	1.1	0.1
P39	RCID	J40	J50	1,471	16	120	698	1.1	0.4
P43	RCID	J46	J114	3,242	16	120	698	1.1	1.2
P47	RCID	J50	J46	662	16	120	698	1.1	0.3
P51	RCID	J32	J96	155	16	120	432	0.7	0.0
P57	RCID	J52	J54	2.515	12	120	162	0.5	0.3
P59	OCU	J56	J20	1,408	24	120	-1,344	1.0	0.2
P63	OCU	J56	J64	1,903	24	120	1,344	1.0	0.3
P67	OCU	J64	J88	735	16	120	1,344	2.1	0.9
P69	OCU	J78	J66	151.17	16	120	710	1.13	0.1

Table B-20 Long-Term Scenario BI-N Fire Flow Results - Junction Report

ID	Demand (gpm)	Elevation (ft)	Head (ft)	Pressure (psi)
J94	634	120	241	52.4a
J86	0	116	241	54.2
J88	0	114	242	55.3
J78	0	113	241	55.4
J64	0	114	243	55.7
J66	710	106	241	58.4
J56	0	107	243	58.9
J30	2,212	105	242	59.5
J34	648	104	243	60.2
J36	228	105	244	60.2
J22	0^{\prime}	105	244	60.2
J20	0	102	243	61.1
J24	0	102	246	62.4
J112	0	103	247	62.4
J118	0	114	302	81.4
J120	0	114	302	81.4
J18	0	114	302	81.4
J116	0	111	302	82.7
J110	0	111	302	82.7
J100	0	111	302	82.7
J96	0	111	302	82.7
J98	0	111	302	82.7
J32	0	111	302	82.7
J54	432	109	302	83.4
J10	0	105	304	86.3
J52	0	102	302	86.6
J16	191	98	302	88.5
$J 114$	0	98	302	88.5
J38	76	96	302	89.4
J40	0	97	304	89.8
J46	0	95	303	90.3
J50	0	95	304	90.4

a. Denotes critical node during fire flow simulation

Table B-21 Long-Term Scenario BI-N Fire Flow Results - Reservoir Report

ID		Flow (gpm)	Head (ft)
RES9002	108^{\prime} Elevation and pressure 85 psi	-698	304
RES9004	120^{\prime} elevation and 56 psi	$-4,432$	250

Table B-22 Long-Term Scenario BI-N Fire Flow Results - Pipe Report

ID	Owner	From Node	To Node	Length (ft)	Diameter (in)	Roughness	Flow (gpm)	Velocity (fts)	Headloss (ft)
P11	RCID	J10	J40	212	16	120	698	1.1	0.1
P117	OCU	J86	J78	990	16	120	710	1.1	0.4
P121	OCU	J88	J86	367	16	120	1,344	2.1	0.5
P13	Private	J114	J16	376	16	120	191	0.3	0.0
P133	Private	J86	J94	184	12	120	634	1.8	0.2
P137	RCID	J96	J18	271	16	120	432	0.7	0.0
P149	RCID	J96	J98	102	16	120	0	0.0	0.0
P15	RCID	J18	J52	1,225	12	120	162	0.5	0.1
P155	RCID	J100	J116	50	16	120	0	0.0	0.0
P159	RCID	$J 110$	$J 100$	33	16	120	0	0.0	0.0
P17	OCU	J20	J22	2,631	24	120	-1,992	1.4	1.0
P173	OCU	J112	RES9004	1,922	24	120	-4,432	3.1	3.0
P177	RCID	$J 114$	J32	2,071	16	120	432	0.7	0.3
P183	OCU	J24	J112	655	24	120	-4,432	3.1	1.0
P189	RCID	J116	J120	285	16	120	0	0.0	0.0
P19	OCU	J22	J24	1,193	24	120	-4,432	3.1	1.9
P191	RCD	J98	U7014	57	16	120	0	0.0	0.0
P193	RCID	U7014	J110	45	16	120	0	0.0	0.0
P195	RCID	J118	J18	408	16	120	0	0.0	0.0
P197	RCID	J120	J64	459	16	120	0	0.0	0.0
P199	RCID	J120	J118	109	12	120	0	0.0	0.0
P23	RCID	J18	J54	1,461	12	120	270	0.8	0.4
P25	Private	J22	J30	524	16	120	2,212	3.5	1.7
P29	Private	J20	J34	329	16	120	648	1.0	0.1
P31	Private	J22	J36	344	16	120	228	0.4	0.0
P35	Private	J114	J38	231	12	120	76	0.2	0.0
P37	RCID	RES9002	J10	291	16	120	698	1.1	0.1
P39	RCID	J40	J50	1,171	16	120	698	1.1	0.4
P43	RCID	J46	J114	3,242	16	120	698	1.1	1.2
P47	RCID	J50	J46	662	16	120	698	1.1	0.3

ID	Owner	From Node	To Node	Length (ft)	Diameter (in)	Roughness	Flow (gpm)	Velocity $(\mathrm{ft} / \mathrm{s})$	Headloss (ft)
P51	RCID	J 32	J 96	155	16	120	432	0.7	0.0
P57	RCID	J 52	J 54	2,515	12	120	162	0.5	0.3
P59	OCU	J 56	J 20	1,408	24	120	$-1,344$	1.0	0.2
P63	OCU	J 56	J 64	1,903	24	120	1,344	1.0	0.3
P67	OCU	$\mathrm{J64}$	J 88	735	16	120	1,344	2.1	0.9
P69	OCU	$\mathrm{J78}$	J 66	151.17	16	120	710	1.13	0.06

Table B-23 Long-Term Scenario BI-S Fire Flow Results - Junction Report

ID	Demand (gpm)	Elevation (ft)	Head (\dagger)	Pressure (psi)
J94	634	120	241	52.4a
J86	0	116	241	54.2
J88	0	114	242	55.3
J78	0	113	241	55.4
J64	0	114	243	55.7
J66	710	106	241	58.4
J56	0	107	243	58.9
J36	2,228	105	243	59.8
J34	648	104	243	60.2
J30	212	105	244	60.2
J22	0	105	244	60.2
J20	0	102	243	61.1
J24	0	102	246	62.4
J112	0	103	247	62.4
J118	0	114	302	81.4
J120	0	114	302	81.4
J18	0	114	302	81.4
J116	0	111	302	82.7
J100	0	111	302	82.7
J110	0	111	302	82.7
J98	0	111	302	82.7
J96	0	111	302	82.7
J32	0	111	302	82.7
J54	432	109	302	83.4
J10	0	105	304	86.3
J52	0	102	302	86.6
J16	191	98	302	88.5
J114	0	98	302	88.5
J38	76	96	302	89.4
J40	0	97	304	89.8

ID	Demand (gpm)	Elevation (ft)	Head (ft)	Pressure (psi)
J 46	0	95	303	90.3
J50	0	95	304	90.4

a. Denotes critical node during fire flow simulation

Table B-24 Long-Term Scenario Bl-S Fire Flow Results - Pipe Report
$\left.\begin{array}{|l|l|l|l|l|l|l|l|l|l|}\hline \text { ID } & \text { Owner } & \begin{array}{l}\text { From } \\ \text { Node }\end{array} & \text { To Node } & \begin{array}{l}\text { Length } \\ \text { (ft) }\end{array} & \begin{array}{l}\text { Diameter } \\ \text { (In) }\end{array} & \text { Roughness }\end{array} \begin{array}{l}\text { Flow } \\ \text { (gpm) }\end{array}\right)$

Walt Disney World West District Water, Wastewater and Reclaimed Water Master Utility Plan | Version 6.0 | September 2018 Page 155

ID	Owner	From Node	To Node	Length (ft)	Diameter (in)	Roughness	Flow (gpm)	Velocity (ft/s)	Headloss (ft)
P63	OCU	J 56	$\mathrm{J64}$	1,903	24	120	1,344	1.0	0.3
P67	OCU	J 64	J 88	735	16	120	1,344	2.1	0.9
P69	OCU	J 78	J 66	151.17	16	120	710.0	1.1	0.1

Table B-25 Long-Term Scenario BI-S Fire Flow Results - Reservoir Report

ID		Flow (gpm)	Head (ft)
RES9002	108^{\prime} Elevation and pressure 85 psi	-698	304
RES9004	120^{\prime} elevation and 56 psi	$-4,432$	250

Table B-26 Long-Term Fire Flow analysis

ID	Static Demand (gpm)	Static Pressure (psi)	Static Head (ft)	Fire-Flow Demand (gpm)	Resldual Pressure (psi)	Avallable Flow at Hydrant (gpm)	Available Flow Pressure (psi)	Critical Pipe ID	Critical Pipe Velocity (fts)
J 30212	62.0	248	2,000	59.5	5013	53.2	P25	8.0	
J 34648	62.0	247	2,000	58.6	5013	52.0	P29	8.0	
J 36	228	62.0	248	2,000	59.8	5013	54.3	P31	8.0
$\mathrm{J66} 710$	60.1	245	2,000	51.5	4,920	35.0	P69	7.9	
J 94634	54.1	245	2,000	46.3	2,820	45.3	P133	8.0	

Table B-27 Short-Term Scenario Peak Hour Flow Junction Report

[Damand (gpm)	Elevation (ii)	Haad (ti)	Pressure (asi)
J98	0	111	191	34.6a
J96	0	111	192	35.1
J32	0	111	194	36.0
J94	1268	120	205	36.6
J86	0	116	205	38.7
J78	0	113	204	39.4
J88	0	114	207	40.3
J64	0	114	210	41.7
J66	1420	106	204	42.4
J18	0	114	214	43.5
J118	0	114	214	43.5
J120	0	114	215	43.6
J56	0	107	210	44.6
J54	720	109	213	45.2
J22	0	105	210	45.4
J34	1296	104	209	45.7
J116	0	111	218	46.5
J20	0	102	210	46.7
J100	0	111	219	46.8
J110	0	111	222	48.3
J52	0	102	214	48.5
J16	318	98	220	53.0
J114	0	98	220	53.0
J38	126	96	220	53.9
J46	0	95	269	75.5
J50	0	95	279	79.8
J10	0	105	300	84.5
J40	0	97	297	86.6
J30	-	-	-	-
J36	-	-	-	-
J24	-	-	-	-
J112	-	-	-	-

Table B-28 Short-Term Peak Hour Reservoir Report

ID	Flow (gpm)	Head (ft)	Description
RES9002	$-5,148$	304	HGL Provided by RCID

Table B-29 Short-Term Scenario Peak Hour Pipe Report
$\left.\begin{array}{|l|l|l|l|l|l|l|l|l|l|}\hline \text { ID } & \text { Owner } & \begin{array}{l}\text { From } \\ \text { Node }\end{array} & \begin{array}{l}\text { To } \\ \text { Node }\end{array} & \begin{array}{l}\text { Length } \\ \text { (ft) }\end{array} & \begin{array}{l}\text { Diameter } \\ \text { (in) }\end{array} & \text { Roughness } & \text { Flow (gpm) } \\ \text { Velocity } \\ \text { (ft/s) }\end{array}\right\}$

Table B-30 Long-Term Scenario Peak Hour Flow Junction Report

ID	Demand (gpm)	Elevation (ft)	Head (ft)	Pressure (psi)
J94	1,268	120	232	48.4a
J86	0	116	232	50.5
J78	0	113	231	51.2
J88	0	114	234	52.0
J64	0	114	237	53.5
J66	1,420	106	231	54.1
J56	0	107	239	57.0
J34	1,296	104	239	58.5
J20	0	102	239	59.6
J30	424	105	243	59.7
J36	456	105	243	59.7
J22	0	105	243	59.8
J24	0	102	245	62.0
J112	0	103	246	62.1
J118	0	114	298	79.7
J120	0	114	298	79.7
J18	0	114	298	79.7
J116	0	111	298	81.0
J100	0	111	298	81.0
J110	0	111	298	81.0
J98	0	111	298	81.1
J96	0	111	298	81.1
J32	0	111	298	81.1
J54	720	109	297	81.5
J52	0	102	298	84.8
J10	0	105	304	86.3
J16	318	98	299	87.1
J114	0	98	299	87.1
J38	126	96	299	88.0
J40	0	97	304	89.6
J46	0	95	302	89.7
J50	0	95	303	90.0

a. Denotes critical node during fire flow simulation

Table B-31 Long-Term Peak Hour Reservoir Report

ID	Flow (g.pm)	Head (ft)	Comment
RES9002	-1,164	304	Source: RCID 108' Elevation and pressure 85 psi
RES9004	-4,864	250	Source: OCU 120^{\prime} elevation and 56 psi

Table B-32 Long-Term Scenario Peak Hour Pipe Report

ID	Owner	From Node	To Node	Length (ft)	Dlameter (in)	Roughness	Flow (gpm)	Velocity (ft's)	Headloss (ft)
P11	RCID	J10	J40	212	16	120	1164	1.9	0.2
P117	OCU	J86	J78	990	16	120	1420	2.3	1.4
P121	OCU	J88	J86	367	16	120	2688	4.3	1.7
P13	Private	J114	J16	376	16	120	318	0.5	0.0
P133	Private	J86	J94	184	12	120	1268	3.6	0.8
P137	RCID	J96	J18	271	16	120	720	1.2	0.1
P149	RCID	J96	J98	102	16	120	0	0.0	0.0
P15	RCID	J18	J52	1225	12	120	271	0.8	0.3
P155	RCID	J100	J116	50	16	120	0	0.0	0.0
P159	RCID	J110	J100	33	16	120	0	0.0	0.0
P17	OCU	J20	J22	2631	24	120	-3984	2.8	3.4
P173	OCU	J112	RES9004	1922	24	120	-4864	3.45	3.61
P177	RCID	J114	J32	2071	16	120	720	1.2	0.8
P183	OCU	J24	J112	655	24	120	-4864	3.5	1.2
P189	RCID	J116	J120	285	16	120	0	0.0	0.0
P19	OCU	J22	J24	1193	24	120	-4864	3.5	2.2
P191	RCD	J98	U7014	57	16	120	0	0.0	0.0
P193	RCID	U7014	J110	45	16	120	0	0.0	0.0
P195	RCID	J118	J18	408	16	120	0	0.0	0.0
P197	RCID	J120	J64	459	16	120	0	0.0	0.0
P199	RCID	J120	J118	109	12	120	0	0.0	0.0
P23	RCID	J18	J54	1461	12	120	449	1.3	1.0
P25	Private	J22	J30	524	16	120	424	0.7	0.1
P29	Private	J20	J34	329	16	120	1296	2.1	0.4
P31	Private	J22	J36	344	16	120	456	0.7	0.1
P35	Private	J114	J38	231	12	120	126	0.4	0.0
P37	RCID	RES9002	J10	291	16	120	1164	1.9	0.3
P39	RCID	J40	J50	1171	16	120	1164	1.9	1.1
P43	RCID	J46	J114	3242	16	120	1164	1.9	3.1
P47	RCID	J50	J46	662	16	120	1164	1.9	0.6
P51	RCID	J32	J96	155	16	120	720	1.2	0.1

ID	Owner	From Node	To Node	Length (ft)	Diameter (in)	Roughness	Flow (gpm)	Velocity (fts)	Headloss (ft)
P57	RCID	J52	J54	2515	12	120	271	0.8	0.7
P59	OCU	J56	J20	1408	24	120	-2688	1.91	0.88
P63	OCU	J56	J64	1903	24	120	2688	1.91	1.19
P67	OCU	J64	J88	735	16	120	2688	4.29	3.32
P69	OCU	J78	J66	151.17	16	120	1,420	2.27	0.21

Table B-33 Short-Term Orange Lake Fire Flow Interim Construction Scenario - Junction Report

ID	Demand (g pm)	Elevation (ft)	Head (ft)	Pressure (psi)
J94	0	120	237	50.6a
J78	0	113	232	51.7
J86	0	116	237	52.4
J88	0	114	239	54.0
J66	2710	106	232	54.4
J64	0	114	242	55.4
J118	0	114	243	56.1
J18	0	114	245	56.9
J54	432	109	245	58.9
J96	0	111	247	58.9
J32	0	111	248	59.3
J122	0	107	245	59.9
J52	0	102	245	62.1
J16	392	98	260	70.4
J114	0	98	260	70.4
J38	94	96	260	71.2
J46	0	95	286	82.7
J50	0	95	291	85.0
J10	0	105	302	85.4
J40	0	97	300	88.1
J34	-	-	-	-
J20	-	-	-	-
J56	-	-	-	-
J120	-	-	-	-
J116	-	-	-	-
J100	-	-	-	-
J110	-	-	-	-

Table B-34 Short Term Orange Lake Fire Flow Interim Construction Scenario- Pipe Report

ID	Owner	From Node	To Node	Length (ft)	Diameter (in)	Roughness	Flow (gpm)	Velocity (ft/s)	Headloss (iti)
P11	RCID	J10	J40	212	16	120	3628	5.8	1.7
P117	OCU	J86	J78	990	16	120	2710	4.3	4.5
P121	OCU	J88	J86	367	16	120	2710	4.3	1.7
P13	Private	J114	J16	376	16	120	392	0.6	0.1
P133	Private	J86	J94	184	12	120	0	0.0	0.0
P137	RCID	J96	J18	271	16	120	3142	5.0	1.6
P15	RCID	J18	J52	1225	12	120	162	0.5	0.1
P177	RCID	J114	J32	2071	16	120	3142	5.0	12.5
P195	RCID	J118	J18	408	16	120	-2710	4.3	1.9
P201	RCID	J52	J122	462	12	100	0	0.0	0.0
P23	RCID	J18	J54	1461	12	120	270	0.8	0.4
P35	Private	J114	J38	231	12	120	94	0.3	0.0
P37	RCID	RES9002	J10	291	16	120	3628	5.8	2.3
P39	RCID	J40	J50	1171	16	120	3628	5.8	9.2
P43	RCID	J46	J114	3242	16	120	3628	5.8	25.5
P47	RCID	J50	J46	662	16	120	3628	5.8	5.2
P51	RCID	J32	J96	155	16	120	3142	5.0	0.9
P57	RCID	J52	J54	2515	12	120	162	0.5	0.3
P61	RCID	J64	J118	341	16	120	-2710	4.3	1.6
P67	OCU	J64	J88	735	16	120	2710	4.3	3.4
P69	OCU	J78	J66	151	16	120	2710	4.3	0.7
P63	-	-	-	-	-	-	-	-	-
P59	-	-	-	-	-	-	-	-	-
P29	-	-	-	-	-	-	-	-	-
P143	-	-	-	-	\bullet	-	-	-	-
P149	-	-	-	-	-	-	-	-	-
P155	-	-	-	-	-	-	-	-	-
P159	-	-	-	-	-	-	-	-	-
P189	-	-	-	-	-	-	-	-	-

ID	Owner	From Node	To Node	Length (ft)	Diameter (in)	Roughness	Flow (gpm)	Velocity (fts)	Headloss (ft)
P191	-	-	-	-	-	-	-	-	-
P193	-	-	-	-	-	-	-	-	-
P197	-	-	-	-	-	-	-	-	-
P199	-	-	-	-	-	-	-	-	-
P173	-	-	-	-	-	-	-	-	-
P183	-	-	-	-	-	-	-	-	
P19	-	-	-	-	-	-	-	-	-

Table B-35 Short Term Orange Lake Fire Flow Interim Construction scenario- Reservoir Report

ID	Flow (gpm)	Head (ft)	Comment
RES9002		$-3,628$	304

Table B-36 Short Term FC-1 Fire Flow Interim Construction Scenario- Junction Report

ID	Demand (gpm)	Elavation (ft)	Head (fit)	Pressure (psi)
J94	2000	120	235	49.8 a
J86	0	116	237	52.4
J78	0	113	236	53.5
J88	0	114	239	54.0
J64	0	114	242	55.4
J118	0	114	243	56.1
J66	710	106	236	56.5
J18	0	114	245	56.9
J54	432	109	245	58.9
J96	0	111	247	58.9
J32	0	111	248	59.3
J122	0	107	245	59.9
J52	0	102	245	62.1
J16	392	98	260	70.4
J114	0	98	260	70.4
J38	94	96	260	71.2
J46	0	95	286	82.7
J50	0	95	291	85.0

ID	Demand (gpm)	Elevallon (ft)	Head (fi)	Pressure (psi)
J10	0	105	302	85.4
J40	0	97	300	88.1
J34	-	-	-	-
J20	-	-	-	-
J56	-	-	-	-
J120	-	-	-	-
J116	-	-	-	-
J100	-	-	-	-
J110	-	-	-	-
J98	-	-	-	-
J36	-	-	-	-
J30	-	-	-	-
J24	-	-	-	-
J112	-	-	-	

Denotes critical node during fire flow simulation

Table B-37 Short Term FC-1 Fire Flow Interim Construction Scenario- pipe report

10	Owner	$\begin{aligned} & \text { From } \\ & \text { Node } \end{aligned}$	Ta Node	Length (ti)	Diameter (in)	Roughneas	$\begin{aligned} & \text { Flow } \\ & \text { (gpm) } \end{aligned}$	Volocliy (ft's)	Heudlass (ft)
P11	RCID	J10	J40	211.62	16	120	3628	6	1.7
P117	OCU	J86	J78	990.15	16	120	710	1	0.4
P121	OCU	J88	J86	366.9	16	120	2710	4	1.7
P13	Private	J114	J16	376.06	16	120	392	1	0.1
P133	Private	J86	J94	184	12	120	2000	6	2.0
P137	RCID	J96	J18	270.9	16	120	3142	5	1.6
P15	RCID	J18	J52	$1,224.9$	12	120	162	0	0.1
P177	RCID	J114	J32	$\begin{gathered} 2,070.5 \\ 9 \end{gathered}$	16	120	3142	5	12.5
P195	RCID	J118	$J 18$	408.38	16	120	-2710	4	1.9
P201	RCID	J52	J122	461.98	12	100	0	0	0.0
P23	RCID	J18	J54	$\begin{gathered} \hline 1,461.0 \\ 8 \end{gathered}$	12	120	270	1	0.4
P35	Private	J114	J38	231.49	12	120	94	0	0.0
P37	RCID	$\begin{gathered} \text { RES9 } \\ 002 \end{gathered}$	J10	290.9	16	120	3628	6	2.3
P39	RCID	J40	J50	$\begin{gathered} \hline 1,171.4 \\ 8 \end{gathered}$	16	120	3628	6	9.2
P43	RCID	J46	J114	$\begin{gathered} 3,242.2 \\ 5 \end{gathered}$	16	120	3628	6	25.5
P47	RCID	J50	J46	661.55	16	120	3628	6	5.2

ID	Owner	From Node	To Node	Length (ft)	Diameter (in)	Roughness	Flow (gpm)	Velocity (ft/s)	Headloss (ft)
P51	RCID	J32	J96	155.03	16	120	3142	5	0.9
P57	RCID	J52	J54	$\begin{gathered} 2,514.6 \\ 8 \\ \hline \end{gathered}$	12	120	162	0	0.3
P61	RCID	J64	J118	341.28	16	120	-2710	4	1.6
P67	OCU	J64	J88	734.64	16	120	2710	4	3.4
P69	OCU	J78	J66	151.17	16	120	710	1	0.1
P63	-	-	-	-	-	-	-	-	-
P59	-	-	-	-	-	-	-	-	-
P29	-	-	-	-	-	-	-	-	-
P143	-	-	-	-	-	-	-	-	-
P149	-	-	-	-	-	-	-	-	-
P155	-	-	-	-	-	-	-	-	-
P159	-	-	-	-	-	-	-	-	-
P189	-	-	-	-	-	-	-	-	-
P191	-	-	-	-	-	-	-	-	-
P193	-	-	-	-	-	-	-	-	-
P197	-	-	-	-	-	-	\bullet	-	-
P199	-	-	-	-	-	-	-	-	-
P173	-	-	-	-	-	-	-	-	-
P183	-	-	-	-	-	-	-	-	-
P19	-	-	-	-	-	-	-	-	-
P31	-	-	-	-	-	-	-	-	-
P25	-	-	-	-	-	-	-	-	-

Table B-38 Short Term FC-1 Fire Flow Interim Construction Scenario- Reservoir report

ID	Description	Flow (gpm)	Head (ft)
RES9002	HGL provided by RCID	$-3,628$	304

Table B-39 Short term FC-2 Fire Flow Interim Construction Scenario- Junction report

ID	Demand (gpm)	Elevation (ft)	Head (fi)	Pressure (psi)
J 122	2000	107	232	54.0 a
J 94	0	120	245	54.0
J 86	0	116	245	55.8
J 88	0	114	245	56.7
J 64	0	114	245	56.8
J 118	0	114	245	56.9
J 78	0	113	244	56.9

11	Demand (gnm)	Elevation (fi)	Head (ti)	Pressure (psi)
J18	0	114	245	56.9
J54	432	109	241	57.2
J96	0	111	247	58.9
J52	0	102	238	59.1
J32	0	111	248	59.3
J66	710 1	106	244	59.9
J16	392	98	260	70.4
J114	0	98	260	70.4
J38	94	96	260	71.2
J46	0	95	286	82.7
J50	0	95	291	85.0
J10	0	105	302	85.4
J40	0	97	300	88.1
J34	-	-	-	-
J20	-	-	-	-
J56	-	-	-	-
J120	-	-	-	-
J116	-	-	-	-
J100	-	-	-	-
J110	-	-	-	-
J98	-	-	-	-
J36	-	-	-	-
J30	-	-	-	-
J24	-	-	-	-
J112	-	-	-	-

Table B-40 Short term FC-2 Fire Flow Interim Construction Scenario- Pipe Report

ID	Owner	From Node	To Node	Lengt h (ft)	Diameter (in)	Roughness	Flow (gym)	Velocity (tus)	Headlos s (ft)
P11	RCID	J10	J40	212	16	120	3628	6	1.7
P117	OCU	J86	J78	990	16	120	710	1	0.4
P121	OCU	J88	J86	367	16	120	710	1	0.1
P13	Private	J114	J16	376	16	120	392	1	0.1
P133	Private	J86	J94	184	12	120	0	0	0.0
P137	RCID	J96	J18	271	16	120	3142	5	1.6
P15	RCID	J18	J52	1225	12	120	1428	4	7.0
P177	RCID	J114	J32	2071	16	120	3142	5	12.5
P195	RCID	$J 118$	J18	408	16	120	-710	1	0.2

ID	Owner	From Node	To Node	Lengt h (1t)	Diameter (in)	Roughness	$\begin{aligned} & \text { Flow } \\ & \text { (opmet } \end{aligned}$	Velocity (H / s)	Headlos s (m
P201	RCID	J52	J122	462	12	100	2000	6	6.9
P23	RCID	J18	J54	1461	12	120	1004	3	4.3
P35	Private	J114	J38	231	12	120	94	0	0.0
P37	RCID	$\begin{gathered} \text { RES900 } \\ 2 \end{gathered}$	J10	291	16	120	3628	6	2.3
P39	RCID	J40	J50	1171	16	120	3628	6	9.2
P43	RCID	J46	J114	3242	16	120	3628	6	25.5
P47	RCID	J50	J46	662	16	120	3628	6	5.2
P51	RCID	J32	J96	155	16	120	3142	5	0.9
P57	RCID	J52	J54	2515	12	120	-572	2	2.6
P61	RCID	J64	J118	341	16	120	-710	1	0.1
P67	OCU	J64	J88	735	16	120	710	1	0.3
P69	OCU	J78	J66	151	16	120	710	1	0.1
P63	-	-	-	-	-	-	-	-	-
P59	-	-	-	-	-	-	-	-	-
P29	-	-	-	-	-	-	-	-	-
P143	-	-	-	-	-	-	-	-	-
P149	-	-	-	-	-	-	-	-	-
P155	-	-	-	-	-	-	-	-	-
P159	-	-	-	-	-	-	-	-	-
P189	-	-	-	-	-	-	-	-	-
P191	-	-	-	-	-	-	-	-	-
P193	-	-	-	-	-	-	-	-	-
P197	-	-	-	-	-	-	-	-	-
P199	-	-	-	-	-	-	-	-	-
P173	-	-	-	-	-	-	-	-	-
P183	-	-	-	-	-	-	-	-	-
P19	-	-	-	-	-	-	-	-	-
P31	-	-	-	-	-	-	-	-	-
P25	-	-	-	-	-	-	-	-	-

Table B-41 Short term FC-2 Fire Flow Interim Construction Scenario - Reservoir Report

ID	Description	Flow (gpm)	Head (位)
RES9002	HGL provided by RCID	$-3,628$	304

Appendix C. Wastewater

Figure C-1 Wastewater Pipe and Node Diagram

NOTE: Minor losses were not accounted for in the hydraulic models. These losses shall be accounted for in the lift station calculations at the time of the construction plan submittal.

Table C-1 Short-Term Scenario Peak Hour Flow Results High Head - Junction Report

ID	Demand (gpm)	Elevation (ft)	Head (ft)	Pressure (psi)
J106	0	105	106	0.6
J126	0	114	117	1.2
$J 128$	0	114	117	1.4
$J 34$	-900	106	128	9.4
J62	0	103	106	1.3
$J 64$	0	105	106	0.4
$J 72$	0	116	122	2.5
$J 76$	0	114	120	2.6
J82	0	101	117	6.8
$J 86$	0	114	117	1.3
$J 92$	0	102	103	0.6
$J 98$	0	114	126	5.3
$J 116$	-	-	-	-
$J 114$	-	-	-	-
$J 58$	-	-	-	-
$J 108$	-	-	-	-

Table C-2 Short-Term Scenario Peak Hour Flow Results High Head - Reservoir Report

ID	HGL Information	Flow (gpm)	Head (fi)
RES9032	Source: LS Calcs FC-2 Pumps Off Water Elevation	-856	93
RES9028	Source: Proposed MH invert Elevation	2,602	103
RES9030	Source: LS Calcs FC-1 Pumps Off Water Elevation	-846	96

Table C-3 Short-Term Scenario Peak Hour Flow Results High Head - Pipe Report

ID	Owner	From Node	To Node	Length (ft)	Diameter (in)	Roughness	Flow (gpm)	Velocity (fits)	Headloss (ft)
P137	OCU	J64	J62	10	12	130	856	2.4	0.0
P143	OCU	J72	J76	867	12	130	900	2.6	1.8
P147	OCU	J76	J86	1391	12	130	900	2.6	2.9
P185	OCU	J62	J92	1351	12	130	856	2.4	2.6
P199	OCU	J86	J126	49	12	130	1746	5.0	0.4
P205	OCU	J92	$J 126$	1878	12	130	-1746	5.0	13.4
P273	RCID	J92	RES9028	87	16	120	2602	4.2	0.4
P279	OCU	J128	J86	23	12	130	846	2.4	0.0
P91	OCU	J34	J72	2777	12	130	900	2.6	5.8
P217	Private	RES9030	FC_1_PMP2	1	6	120	846	9.6	0.1
P219	Private	RES9030	FC_1_PMP1	1	6	120	0	0.0	0.0
P221	Private	FC_1_PMP2	J98	16	6	120	846	9.6	1.0
P223	Private	FC_1_PMP1	J98	16	6	120	0	0.0	0.0
P225	Private	J98	J128	678	8	130	846	5.4	9.1
P231	Private	RES9032	FC_2_PMP1	1	6	120	856	9.7	0.1
P233	Private	RES9032	FC_2_PMP2	1	6	120	0	0.0	0.0
P235	Private	FC_2_PMP2	J106	14	6	120	0	0.0	0.0
P237	Private	FC_2_PMP1	J106	14	6	120	856	9.7	0.9
P239	Private	J106	J64	188	12	130	856	2.4	0.4
P151	RCID	J82	J16	225	12	130	0	0.0	0.0
P277	RCID	J126	J82	600	12	130	0	0.0	0.0
61	-	-	-	-	-	-	-	-	-
63	-	-	-	-	-	-	-	-	-
118	-	-	-	-	-	-	-	-	-
-119	-	-	-	-	-	-	-	-	-
120	-	-	-	-	-	-	-	-	-
121	-	-	-	-	-	-	-	-	-
124	-	-	-	-	-	-	-	-	-
125	-	-	-	-	-	-	-	-	-
127	-	-	-	-	-	-	-	-	-
128	-	-	-	-	-	-	-	-	-
129	-	-	-	-	-	-	-	-	-
130	-	-	-	-	-	-	-	-	-
131	-	-	-	-	-	-	-	-	-

Table C-4 Short-Term Scenario Peak Hour Flow Results High Head - Pump Report

ID	Elevation (ft)	Upstream Pressure (psi)	Downstream Pressure (psi)	Flow (gpm)	Head Gain (ft)	Status
FC_2_PMP1	92.82	0.6	6.9	856	14	Open
FC_2_PMP2	92.82	0.7	6.5	0	0	Closed
FC_1_PMP1	95.96	0.7	13.8	0	0	Closed
FC_1_PMP2	95.96	0.6	14.2	846	31	Open
BI_N_PMP1	-	-	-	-	-	-
BI_N_PMP2	-	-	-	-	-	-
BI_S_PMP1	-	-	-	-	-	-
BI_S_PMP2	-	-	-	-	-	-

NOTE: the pumps for FC-1 and FC-2 are required to be changed prior to connecting to OCU om the long term scenario.

Pump FC_1_PMP2 at 00:00 hrs

Figure C-2 FC-1 High Head Pump Curve

Pump FC_2_PMP1 at 00:00 hrs

Figure C-3 FC-2 High Head Pump Curve

Table C-5 Long-Term Scenario Peak Hour Flow Results High Head - Junction Report

ID	Demand $(\mathrm{gpm)}$	Elevation (ft)	Head (ft)	Pressure (psil)
J 58	0	101	189	38.0
J 108	0	94	190	41.3
J 114	0	91	189	42.7
J 116	0	91	190	42.9
J 62	0	103	202	42.8
J 64	0	105	202	42.0
J 92	0	102	212	47.6
J 106	0	105	202	42.2
J 82	0	101	226	54.1
J 86	0	114	226	48.7
J 98	0	114	236	53.0
J 126	0	114	226	48.5
J 128	0	114	226	48.7
J 34	-900	106	237	56.7
J 72	0	116	231	49.8
J 76	0	114	229	49.9

Table C-6 Long-Term Scenario Peak Hour Flow Results High Head- Reservoir Report

ID	HGL Information	Flow (gpm)	Head (ft)
RES9010	Source: OCU Elevation 120' and 27 psi pressure	3436	182
RES9030	Source: LS Calcs FC-1 Pumps Off Water Elevation	-891	96
RES9032	Source: LS Calcs FC-2 Pumps Off Water Elevation	-907	93
RES9034	Source: LS Calcs BI-N Pumps Off Water Elevation	-395	84
RES9036	Source: LS Calcs BI-S Pumps Off Water Elevation	-343	97

Table C-7 Long-Term Scenario Peak Hour Flow Results High Head - Pipe Report

ID	Owner	From Node	To Node	Length (ft)	Diameter (iin)	Roughness	Flow (gpm)	Velocity (fts)	Headloss (ft)
P131	OCU	J58	RES9010	3,179	20	130	3436	3.5	6.6
P135	OCU	J62	J58	3,381	16	130	2698	4.3	13.3
P137	OCU	J64	J62	10	12	130	907	2.6	0.0
P143	OCU	J72	J76	867	12	130	900	2.6	1.8
P147	OCU	J76	J86	1,391	12	130	900	2.6	2.9
P185	OCU	J62	J92	1,351	12	130	-1791	5.0	10.1
P199	OCU	J86	J126	49	12	130	1791	5.0	0.4
P205	OCU	J92	J126	1,878	12	130	-1791	5.0	14.0
P279	OCU	J128	J86	23	12	130	891	2.5	0.1
P91	OCU	J34	J72	2,777	12	130	900	2.6	5.8
P217	Private	RES9030	FC_1_PMP2	1	6	120	891	10.1	0.1
P219	Private	RES9030	FC_1_PMP1	1	6	120	0	0.0	0.0
P221	Private	FC_1_PMP2	J98	16	6	120	891	10.1	1.1
P223	Private	FC_1_PMP1	J98	16	6	120	0	0.0	0.0
P225	Private	J98	J128	678	8	130	891	5.7	10.0
P231	Private	RES9032	FC_2_PMP1	1	6	120	907	10.3	0.1
P233	Private	RES9032	FC_2_PMP2	1	6	120	0	0.0	0.0
P235	Private	FC_2_PMP2	J106	14	6	120	0	0.0	0.0
P237	Private	FC_2_PMP1	J106	14	6	120	907	10.3	1.0
P239	Private	J106	J64	188	12	130	907	2.6	0.4
P241	Private	Bl_S_PMP1	J108	8	4	120	0	0.0	0.0
P243	Private	BI_S_PMP2	J108	8	4	120	343	8.8	0.7
P245	Private	RES9036	BI_S_PMP1	1	6	100	0	0.0	0.0
P247	Private	RES9036	BI_S_PMP2	1	8	120	343	2.2	0.0
P253	Private	J108	J58	104	6	130	343	3.9	1.1
P255	Private	J114	J58	53	6	130	395	4.5	0.7
P259	Private	RES9034	BI_N_PMP1	1	4	120	0	0.0	0.0
P261	Private	RES9034	BI_N_PMP2	1	4	120	395	4.5	0.0
P263	Private	BI_N_PMP1	J116	9	4	120	0	0.0	0.0
P265	Private	BI_N_PMP2	J116	9	4	120	395	10.1	1.0
P267	Private	J116	J114	34	6	130	395	4.5	0.5
P277	RCID	J126	J82	600	12	130	0.00	0	0.0

Table C-8 Long-Term Scenario Peak Hour Flow Results High Head - Pump Report

ID	Elevation (ft)	Upstream Pressure (psi)	Downstream Pressure (psi)	Flow (gpm)	Head Gain (ft)	Status	Setting	Available NPSH (ft)	Cavitation Index
BI_N_PMP1	83.85	1.1	47.0	0	0	Closed 0	0	0	
BI_N_PMP2	83.85	1.1	47.4	395	107	Open 1	36	0	
BI_S_PMP1	96.56	0.9	41.2	0	0	Closed 0	0	0	
BI_S_PMP2	96.56	0.9	41.5	343	94	Open 1	35	0	
FC_1_PMP1	95.96	0.7	61.5	0	0	Closed 0	0	0	
FC_1_PMP2	95.96	0.6	62.0	891	142	Open 1	35	0	
FC_2_PMP1	92.82	0.6	48.5	907	111	Open 1	35	0	
FC_2_PMP2	92.82	0.7	48.1	0	0	Closed 0	0	0	

NOTE: the pumps for FC- 4 and FC-2 are required to be changed prior to connecting to OCU in the long term scenario.

Pump FC_1_PMP2 at 00:00 hrs

Figure C-4 Long Term Scenario FC-1 High Head Pump Curve

Pump FC_2_PMP1 at 00:00 hrs

Figure C-6 Long Term Scenario FC-2 High Head Pump Curve
Pump BI_N_PMP2 at 00:00 hrs

Figure C-6 Long Term Scenario BI-N High Head Pump Curve

Pump BI_S_PMP2 at 00:00 hrs

Figure C-7 Long Term Scenario Bl-S High Head Pump Curve

Appendix D. Reclaimed Water

Table D-1 Short-Term Scenario Peak Hour Demand Results - Junction Report

ID	Demand (gpm)	Elevation (ft)	Head (ft)	Pressure (psi)
J10	0	111	145	15
J100	0	114	241	55
J102	0	114	240	55
J12	0	115	238	53
J14	0	103	237	58
J16	0	105	237	57
J24	850	105	234	56
J28	488	109	233	54
J36	149	98	184	37
J38	19	96	185	38
J40	0	105	298	84
J42	0	100	287	81
J48	0	99	253	67
J52	0	98	269	74
J54	0	106	237	57
J56	0	112	235	53
J58	0	110	237	55
J60	0	113	223	47
J62	0	114	234	52
J66	0	116	228	49
J72	0	107	237	56
J74	0	114	238	54
J76	600	106	221	50
J80	0	101	185	36
J82	0	111	249	60
J84	0	111	253	62
J90	0	111	144	14
J92	0	111	148	16
J94	0	114	232	51
J98	733	114	236	53

Table D-2 Short-Term Scenario Peak Hour Demand Results - Reservoir Report

ID	Flow (gpm)	Head (ft)	Comment
RES9000	Elevation 108' and pressure of 83 psi	$-2,839$	299

Table D-3 Short-Term Scenario Peak Hour Demand Results - Pipe Report
$\left.\begin{array}{|l|l|l|l|l|l|l|l|l|l|}\hline \text { ID } & \text { Owner } & \text { From Node } & \text { To Node } \\ \text { Length } \\ \text { (f) }\end{array}\right]$

ID	Owner	From Node	To Node	Length (ft)	Diameter (in)	Roughness	Flow (gpm)	Velocity $(\mathrm{ft} / \mathrm{s})$	Headloss (ft)
P159	-	-	-	-	-	-	-	-	-

Table D-4 Long-Term Scenario Peak Hour Demand Results - Junction Report

ID	Demand (gpm)	Elevation (f)	Head (ft)	Pressure (psi)
J60	0	113	222	47
J66	0	116	227	48
J76	600	106	220	49
J94	0	114	231	51
J62	0	114	232	51
J98	733	114	235	53
J74	0	114	237	53
J72	0	107	237	56
J24	850	105	235	56
J20	561	108	239	57
J22	561	106	238	57
J14	0	103	238	58
J16	0	105	241	59
J18	0	105	244	60
J12	0	115	290	76
J56	0	112	287	76
J102	0	114	290	76
J28	488	109	285	76
J10	0	111	290	77
J90	0	111	290	77
J92	0	111	290	77
J58	0	110	289	78
J54	0	106	289	79
J80	0	101	291	83
J36	149	98	291	84
J40	0	105	299	84
J38	19	96	291	85
J48	0	99	296	85
J42	0	100	298	86
J52	0	98	297	86
J84	0	111	436	141
J82	0	111	436	141

Table D-5 Long-Term Scenario Peak Hour Demand Results - Reservoir Report

ID	Flow (gpm)	Head (f)	Cominent
RES9000	-656	299	Source: RCID Elevation 108' and pressure of 83 psi
RES9002	-3305	250	Source: OCU Elevation 120' and pressure of 56 psi

Table D-6 Long-Term Scenario Peak Hour Demand Results - Pipe Report

ID	Owner	From Node	To Node	Length (ft)	Diameter (in)	Roughne ss	Flow (gpm)	Velocity (fts)	Headloss (ft)
P11	RCID	RES9000	J40	53	12	120	656	2	0
P119	RCID	J80	J92	2,022	12	120	488	1	2
P127	RCID	J84	J82	54	12	120	0	0	0
P13	OCU	J18	RES9002	2,897	20	120	$-3,305$	3	6
P135	RCID	J10	J90	83	12	120	0	0	0
P139	RCID	J12	J58	819	8	130	122	1	0
P143	RCID	J92	J10	135	12	120	488	1	0
P145	RCID	J90	U7002	47	12	120	0	0	0
P147	RCID	U7002	J84	43	12	120	0	0	0
P149	Private	J74	J98	733	12	120	733	2	1
P151	OCU	J94	J66	508	8	130	600	4	4
P159	RCID	J102	J74	215	8	130	0	0	0
P17	OCU	J14	J16	2,532	20	120	$-2,183$	2	3
P19	OCU	J16	J18	1,350	20	120	$-3,305$	3	3
P21	Private	J16	J20	281	8	130	561	4	2
P23	Private	J16	J22	426	8	130	561	4	3
P25	Private	J24	J14	193	8	130	-850	5	3
P29	RCID	J28	J12	1,522	8	130	-366	2	4
P37	Private	J80	J36	277	6	130	149	2	1
P39	Private	J80	J38	175	6	130	19	0	0
P43	RCID	J42	J52	928	12	120	656	2	1
P47	RCID	J12	J10	261	12	130	-488	1	0
P49	RCID	J48	J80	3,359	12	120	656	2	5
P53	RCID	J52	J48	783	12	120	656	2	1
P59	RCID	J54	J56	1,448	6	130	122	1	2
P61	RCID	J56	J28	1,116	6	130	122	1	2
P63	RCID	J58	J54	326	8	130	122	1	0
P71	OCU	J62	J94	245	8	130	600	4	2
P73	OCU	J62	J74	577	8	130	-600	4	4
P75	OCU	J66	J60	784	8	130	600	4	6
P79	RCID	J12	J102	433	8	130	0	0	0

ID	Owner	From Node	To Node	Length (ft)	Diameter (in)	Roughne ss	Flow (gpm)	Velocity $(\mathrm{ft}$ s)	Headloss (ft)
P81	OCU	J72	$\mathrm{J14}$	1,509	20	120	$-1,333$	1	1
P83	OCU	J72	J74	1,718	20	120	1,333	1	1
P87	OCU	J60	J76	267	8	130	600	4	2
P91	RCID	J40	J42	515	12	120	656	2	1
P157	-	-	-	-	-	-	-	-	-
P137	-	-	-	-	-	-	-	-	-
P161	-	-	-	-	-	-	-	-	-
P125	-	-	-	-	-	-	-	-	-

Appendix E. Lift Station Calculations

FC-1 Short-Term Lift Station Calculations

Wet Well Design Worksheet

Short-Term Flamingo East Parcel - FC1

Diameter =
Area =
Vol./ft =
Peak Flow In=
Actual Pump Rate $=$

8 ft
50.27 Sq ft
376.0 gal/ft 816 gpm 846 gpm
$\mathrm{V}=(\mathrm{QT}) / 4$
where,
Q = Design Flow Rate =
T = Assumed Cycle Time =
V = Volume =

846	gpm
2115.0	minutes
gallons	

The height to which this volume will rise in the wet well is calculated by the following equation.
$\mathrm{H}=$ Volume/(Volume/foot of the wet well $)=$

5.63 feet
6.00

Check Pump Run-Time
Actual Pump Flow Rate $=$
Run-time $=$ Volume/ flow rate $=$

846	gpm
2.50	minutes

Finished Grade Elevation 113.84 ft	Top of Wet Well	114.09 ft	Grade to Top of Wet Well 0.25 feet
		\rightarrow	Total Wet Well Depth
			20.13 feet
	103.46 ft		
			0.5 feet
	Alarm	102.96 ft	
			0.5 feet
	Lag Pump On	102.46 ft	
			0.5 feet
	Lead Pump On	101.96 ft	
			6.00 feet
	Both Pumps Off	95.96 ft	
			1.50 feet
	Top of Grout	94.46 ft	
			0.5 feet
	Bottom	93.96 ft	

NP 3127 MT 3- Adaptive 438

Technical specification

Installation: P-Semi parmanent, Wet

Different pumps are used for FC-1 in the short-term and long-term scenarios

Note: Picture mioth not correspond to the current configuretion.

General
Patented sell cioening semi-open channel inpetar, ideal for pumping in maste witer epilications. Poasth lo be uporaded ith Guidepmin for even buttur clogging mesistance. Modupir based denion with high adaptation grade.

Impaller

Impelmor materian	HerdHron ${ }^{\text {m }}$
Olscharge Fiange Oiameter	31516 lnch
Suction Flange biameter	$57 / 8$ men
Imperer ditincter	202 mm
Number of blades	2

Motor

Motor	N3127.060 21-12-ANLW 10hp Standiard
Stator variant	38
Frequency	00 Hz
Rated vollage	400 V
Number of poles	4
Phases	3-
Rated power	10 hp
Rated curment	13 A
Starting current	79.8 A
Rated speed	1735 rpm
Power İactor	
1/1 Loed	0.85
3/4 Land	0.81
1/2 Lond	0.73
Motor fflliciency	
$1 / 1$ Loed	83.4\%
9/4 Loed	83.9%
1/2 Land	82.2\%

Conilguration

Different pumps are used for FC-1 in the short-term and long-term scenarios

FITMET
NP 3127 MT 3~ Adaptive 438
Performance curve

Pump		Motor			
Discharge Fange Diameter	$315 / 16$ inch	Motor*	N3127.060 21-12-4AL-W 10np	Powerfactor	
Suction Range Diameter	150 mm			1/1 Load	0.85
Impeller diameter	74\%	Stator variant	38	3/4 Load	0.81
Number of blades	2	Frequency	60 Hz	1/2 Load	0.73
		Rated voltage	460 V		
		Number of poles	4	Motor efliciency	
		Phases	3-	1/1 Load	83.4\%
		Rated power	10 hp	3/4 Load	83.9\%
		Rated cument	13 A	1/2 Load	82.2 \%
		Starting cument Prated speed	79.9 A 1735 mm		

xylem

NP 3127 MT 3~ Adaptive 438

Duty Analysis

VFD Curve

xylem
NP 3127 MT 3~ Adaptive 438
VFD Analysis

Frequency	Flow	Head	Shaft power	Flow	Heed	Shatit power	Hyd eft.	Specifle energy	NPSHT
60H2	86usgpm	3074	94310	gmusgnm	3074	9435	71\%	15.7 MMUSNG	
55 Hz	Thusgam	2887	7260	7risinm.	258\%	7264	7\%	136 WHOUSMG	
5012	$79458 . p m$	23.31	5.469	794S9pm.	$213 n$	5469	71%	114 MnUSMG	
45 Hz	670	17.3 n	3989	677 USgpm.	17.3n	3889	718	952MMUSMG	
40 Hz	spusgam	136 ${ }^{\text {f }}$	27919	5\%usgpm	1367	279 mp	7\%	796 WWHUSMG	7.07\%

NP 3127 MT 3~ Adaptive 438
Dimensional drawing

NP 3127 MT 3~ Adaptive 438

Life cycle costs (LCC)

Total lifetime	15	Inflation rate (rate of price increasesi)	2%
Annual operating time	5600	Interest rate (for investment)	3%
Energy cost per IMh	0.00 USD		

Power input P1

Total costs

First year costs

0.00 USD Energy (1st year)
0.00 USD investment costs (1st year)
0.00 USD Installation \& commissioning (1st year)
0.00 USD Operating cost (1st year)
0.00 USD Maintenance \& repair (1st year)
0.00 USD Downtime (1st year)
0.00 USD Environmental (1st year)
0%
0.00 USD Decommissioning (1st year)
0.00

USD

Disclaimer. The calculations and the results are based on user input values and general assumptions and provide only estimated costs for the input data. Xyleminc can therefore not guarantee that the estimated savings will actually occur.

FC-1 Long-Term Lift Station Calculations

Wet Well Design Worksheet

Long-Term Flamingo East Parcel - FC1

The height to which this volume will rise in the wet well is calculated by the following equation.

$\mathrm{H}=$ Volume/(Volume/foot of the wet well) $=$	5.92 feet
Use an actual height of:	$\square .00$ feet

Check Pump Run-Time

Actual Pump Flow Rate $=$ Run-time $=$ Volume $/$ flow rate $=$

891
2.50
minutes

Finished Grade Elevation$113.59 \mathrm{ft}$	Top of Wet Well	113.84 ft	Grade to Top of Wet Well 0.25 feet
		$\xrightarrow{3}$	Total Wet Well Depth 19.88 feet
	103.46 ft		
			0.5 feet
	Alarm	102.96 ft	
			0.5 feet
	Lag Pump On	102.46 ft	
			0.5 feet
	Lead Pump On	101.96 ft	
			6.00 feet
	Both Pumps Off	95.96 ft	
			1.50 feet
	Top of Grout	94.46 ft	
			0.50 feet
	Bottom	93.96 ft	

NP 3202 HT 3~ 467

Technical specification

Abte: Picture might not cornespond to the current configuration.
General
Patented sew cleaning semi-open channel impelar, ideal lor pumping in meste water appications. Possibie to b uporided with Guide-pint for even betior clooring resistance. Modumer based desion whih high adaptation oride.

Impeller

Installation: P.Semi permanent, Wet

Motor	
Motor	N3202. 185 30-24-4AA+W 60 mp Standerd
Stator varlant	1
Frequency	60 Mz
Rated voinge	400 V
Number of potes	4
Prases	$3 \times$
Rated pomer	60 hp
Rated curnent	08
Starting cumtent	4254
Rated speed	1770 rpm
Power factior	
1/1 Load	0.91
9/4 Lodd	0.88
1/2 Loed	0.82
Motor efficimey	
1/1 Lowd	91.5 \%
3/4 Laed	92.0\%
1/2 Lasd	92.5\%

Conflguration

Different pumps are used for FC-1 in the short-term and long-term scenarios

Performance curve

xylem

NP 3202 HT 3-467

Duty Analysis

xylem
NP 3202 HT 3~ 467
VFD Curve

xylem
NP 3202 HT 3~ 467

VFD Analysis

Pumps Synning
1
1
1
1
1

Frequency	Flow	Head
COHz	g38usgam	146
547 Hz	768 USgpm	120
497142	G98USgm	1017
448Hz	6RUSgpm	818 h
328 Hz	508 USgam	647 t

Shati power	Flow
44.6 hp	838 Usgpm
342 m	768 Uspm
257 mp	gr8usgmm
187 p	63 USg mm
132 p	5\% Usgmm

Shath powner	Hyd eff.	specific energy	NPSHTe
4.6 tp	69.4\%	713 MMNS MG	13.6 n
327 ¢	62.4\%	59 MMHNSMG	11.9 n
227%	694\%	499 WMNS MG	10211
187 mp	694\%	4 T0MMUSMG	86%
132 p	69.4\%	332 WMNSS MG	7.12 l

xylem
NP 3202 HT 3~ 467
Dimensional drawing

Weight (lbs)	
Pump with cooling jaded	Dish
1235	100

NP 3202 HT 3~ 467

Life cycle costs (LCC)

Total lifetime	15	Inflation rate frate of price increases)	2%
Annual operating time	5600	Interest rate (for investment)	3%
Energy cost per KWh	0.00 USD		
Power input $P 9$			

Total costs
0.00 USD Energy
0.00 USD Investment costs
0.00 USD Installation \& commissioning
0.00 USD Operating cost
0.00 USD Maintenance \& repair
0.00 USD Downtime
0.00 USD Environmental
0.00 USD Decommissioning
0.00

USD

First year costs
0.00 USD Energy (1st year)
0.00 USD Investment costs (1st year)
0.00 USD Installation \& commissioning (1st year)
0.00 USD Operating cost (1st year)
0.00 USD Maintenance \& repair (1st year)
0.00 USD Downtime (1st year)
0.00 USD Environmental (1st year)
0.00 USD Decommissioning (1st year)
0.00

USD costs for the input data. Xyleminc can therefore not guarantee that the estirnated savings will actually occur.

FC-2 Short-Term Lift Station Calculations

Wet Well Design Worksheet

Short-Term Flamingo East Parcel - FC2

Diameter $=$	12 ft
Area $=$	113.10 Sq ft
Vol. $/ \mathrm{ft}=$	$846.0 \mathrm{gal} / \mathrm{ft}$
Peak Flow In=	833 gpm
Actual Pump Rate $=$	856 gpm
$\mathrm{V}=(\mathrm{QT}) / 4$	
where,	
$\mathrm{Q}=$ Design Flow Rate $=$	
$\mathrm{T}=$ Assumed Cycle Time $=$	856
$\mathrm{~V}=$ Volume $=$	gpm

The height to which this volume will rise in the wet well is calculated by the following equation.
$H=$ Volume/(Volume/foot of the wet well) $=\square 2.53$ feet
Use an actual height of:

Check Pump Run-Time

Actual Pump Flow Rate $=$ Run-time $=$ Volume/ flow rate $=$

856
2.50

Technical specification

Installation: P.Sewi permanent Wot

Note: Picture might not comespond to the current configuration.

Motor	
Mator ${ }^{\text {\% }}$	N3102.920 18-11-AAS-W IE3 5.5MP Standard
Stator variant	1
Frequancy	00 Hz
Rated volage	400 V
Number of poles	4
Phases	3-
Rated power	5.5 hp
Rated current	6.2 A
Starting current	42 A
Rated speed	1800 pm
Pomer fisctor	
1/1 Land	0.90
3/4 Land	0.86
1/2 Loed	0.75
Motor fiflelency	
1/1 Lod	91.9 \%
3/4 Loed	91.5 \%
1/2 Loed	90.1 \%

Configuration

Different pumps are used for FC-2 in the short-term and long-term scenarios

NP 3102 LT 3~ Adaptive 422

Performance curve

Pump		Motor
Discharge Fange Diameter	$315 / 16$ inch	Motor ${ }^{\text {a }}$
Suction Range Diameter	100 mm	
Impeller diameter	61%	Stator veriant
Number of blades	2	Frequency
		Premed voltage
		Number of pol
		Phases
		Rated power
		Rated cument
		Starting current
		Reated speed

N3102.920 18-11-4AS-WIE3 5.5hp	Powar factor	
	$1 / 1$ Laad	0.90
1	$3 / 4$ Load	0.86
60 H	$1 / 2$ Laad	0.75
460 V		Motor efliciency
4	$1 / 1$ Laad	91.9%
3 m np	$3 / 4$ Lasd	91.5%
5.5 hp	$1 / 2$ Load	90.1%
42 A		

Duty point
Flow Head
833 US g.p.m. 16.8 ft

Project
Project ID
Created by
Created on 2/14/2018

Last updete

NP 3102 LT 3~ Adaptive 422
Duty Analysis

xylem
NP 3102 LT 3~ Adaptive 422

VFD Curve

xylem
NP 3102 LT 3～Adaptive 422
VFD Analysis

Pumps
running 1syem

Frequency	Flow	Head	Shant powner	Flaw	Hend	Shate power	Hyd eff．	Specific energy	MPSHre
COHz	$80 \times$ USg．pm	15．3n	5.37 pp	cor USgpm	r6．3n	5.37 \％	62\％	ga7MOMUSMC	13.6 n
55 Hz	710USg．pm	M7 7	4.12 p	7045 gmm	147	401p	618\％	Tomurusmg	11.7 䛔
$5 \mathrm{SOH}^{\text {H }}$	608 US 9 pm	132月	300 p	608 USgpra	132 n	300 tp	65．7\％	TOMMUSMG	10n
45 Hz	501 US 9．pm	118 l	22200	501 USgam	118月	220	67．4\％	G3MMVSMG	852 年
40 Hz	362 US $9 . \mathrm{pm}$	10．6 f	1．521p	362 US9．pm	106月	1．52\％	67．5\％	$5 \times .7 \mathrm{MWMUSMG}$	7．1年

xylem
NP 3102 LT 3~ Adaptive 422
riner
Dimensional drawing

FC-2 Long-Term Lift Station Calculations

Wet Well Design Worksheet

Long-Term Flamingo East Parcel - FC2

Diameter $=$	12 ft
Area $=$	113.10 Sq ft
Vol./ft $=$	$846.0 \mathrm{gal} / \mathrm{ft}$
Peak Flow In=	833 gpm
Actual Pump Rate $=$	907 gpm
$\mathrm{V}=(\mathrm{QT}) / 4$	
where,	
$\mathrm{Q}=$ Design Flow Rate $=$	
$\mathrm{T}=$ Assumed Cycle Time $=$	
$\mathrm{V}=$ Volume $=$	907

The height to which this volume will rise in the wet well is calculated by the following equation.
$\mathrm{H}=$ Volume $/($ Volume/foot of the wet well $)=$

2.7
feet

Use an actual height of:
3.0 feet

Check Pump Run-Time

Actual Pump Flow Rate $=$ Run-time $=$ Volume $/$ flow rate $=$

907	gpm
2.50	

Finished Grade Elevation
xylem
NP 3202 HT 3~ 468 Technical specification

Imetallation: P.Semi permanent, Wet

Different pumps are used for FC-2 in the short-term and long-term
scenarios

FIEGGT

Note: Picture might not correspond to the cument configuration.
General
Patented sell cloaning semi-cpen channel impou-r, ideel for pumping in
ueste weter epplications. Possible to be upgraded with Guide-pind for even better cloging restiblence. Modutar based dasign with high adaptation grade.

impalier

Impelior materiel	H
Discharge Flance Olameter	$319 / 16$ inch
Suction Fiange biameter	7710 inch
Imperiter diameter	316 mm

Number of biede

Motor	
Motor ${ }_{\text {動 }}$	N3202. 185 30-19-4NA+W 45mp Standard
Stator vartant	1
Frequency	60 Hz
Rated voltage	460 V
Number of poles	4
Prases	3-
Rated power	45 hp
Rated curnent	52 A
Starting current	308 A
Rated speed	1775 rmm
Power factor	
1/1 Lasd	0.89
3/4. Land	0.85
1/2 Lasd	0.77
Motor ofliciency	
$1 / 1$ Lodd	81.0\%
3/4 Lasd	91.5 \%
1/2 Lowd	91.0\%

Configuration
xylem
NP 3202 HT 3~ 468

Performance curve

xylem
NP 3202 HT 3~ 468
Duty Analysis

xylem
NP 3202 HT 3~ 468
VFD Curve

xylem
NP 3202 HT 3~ 468
VFD Analysis

\& . - Bate (x)

NP 3202 HT 3~ 468

Life cycle costs (LCC)

Total lifatime	15
Annual operading time	5600
Energy cost per iath	0.00 us0

Power input P1

Total cosis

0.00

USD

First year costs

0.00

USD

Inflation rate (rate of price increases)	2%
Interest rate (for investment)	3%

	0.00 USD Energy
	0.00 USD Investment costs
0%	0.00 USD Installation $\&$ commissioning
	0.00 USD Operating cost
	0.00 USD Maintenance \& repair
$\%$	0.00 USD Downtime
0%	0.00 USD Environmental
0%	0.00 USD Decommissioning

	0.00 USD Energy (1st year)
	0.00 USD
0%	0.00 USD Instment collation \& commissioning (1st year)
	0.00 USD Operating cost (1st year)
	0.00 USD Maintenance \& repair (1st year)
	0.00 USD Downtime (1st year)
0%	0.00 USD Environmental (1st year)
0%	0.00 USD Decommissioning (1st year)

Disclaimer. The calculations and the results are based on user input values and general assumptions and provide only estimated costs for the input data. Xyleminc can therefore not guarantee that the estimated savings will actually occir.

BI-N Long-Term Lift Station Calculations

Wet Well Design Worksheet

Long-Term Flamingo East Parcel - Bl-N

The height to which this volume will rise in the wet well is calculated by the following equation.
$H=$ Volume/(Volume/foot of the wet well) $=\quad 4.67$ feet
Use an actual height of:

Check Pump Run-Time

Actual Pump Flow Rate $=$ Run-time $=$ Volume $/$ flow rate $=$

395	gpm
2.50	minutes

xylem

NP 3153 SH 3~ 275

Technical specification

Note: Picture minh not correspond to the cerrent configuretion.

General Petented sell cleaning semiweste witer applications. Po for ev en better clogging res adaplation grede.	rannel impeltor, ideal for pumpin obe upgraded with Guide-pind Modutar based clasion with high
Impeller	
Impener materta	Herctron ${ }^{\text {m }}$
Discharge Flance Olameter	31516 mach
Suction Fiange Dismeler	150 mm
Impertor dismeter	167 mm
Number of blades	2
Motor	
Motor \#	N3153.185 21-18-28B-W/ 23 hp
Stator varlant	
Frequency	60 Hz
Rated voltage	400 V
Number of poles	2
Phases	3
Rated power	23 p
Rated curment	26 A
Starting current	215 A
Rated speed	3510 pmm
Pomer factor	
1/1 Loed	0.90
3/4 Lond	0.87
1/2 Lowd	0.79
Pump Efficioncy	
1/1 Lond	91.0\%
3/4 Land	91.5\%
1/2 Lodd	91.5%

NP 3153 SH 3~ 275
Performance curve

Project
xylem
NP 3153 SH 3~ 275

Duty Analysis

xylem
NP 3153 SH 3~ 275
VFD Curve

xylem
NP 3153 SH 3- 275
VFD Analysis

Pumps running 13ymiom	Frequency	Flow	Head	Shatt power	Flow	Head	Shat power	Hyd ent.	Specific energy	NPSHT
1	cottz	32 usgmm	119	179 mp	32 usg mm	199f	17.9 np	558\%	727 marus	1412
1	$5{ }^{5} \mathrm{H}$	310 US gmm .	9961	138 p	300 USgm	9066	138 p	58.8	612 win	123年
1	50 Hz	2710	8031	103 p	2710 Sg pm	823n	103 p	588\%	509 tan US	10.6t
1	45te	29 USgm.	6a7a	7314	29 USgpm.	66.7 l	7391p	588\%	417 MHTUS	892f
1	40tte	$22 \mathrm{USgm}$.	527 n	5.319	22 USgmm	527 h	5.310	558\%	338 WTHUS	738

xylem
NP 3153 SH 3~ 275

40

B^{N}

NP 3153 SH 3~ 275

Life cycle costs (LCC)

Total lifetime	15
Annual operating time	5600
Energy cost per leth	0.00 USD
Pomer input P1	
Total costs	

Inflation rate (rate of price increases)	$\mathbf{2 \%}$
Interest rate (for investment)	$\mathbf{3 \%}$

	0.00 USD Energy
	0.00 USD Investment costs
0%	0.00 USD Installation $\&$ commissioning
	0.00 USD Operating cost
	0.00 USD Maintenance $\&$ repair
	0.00 USD Downtime
0	0.00 USD Emvironmental
0%	0.00 USD Deconmissioning

0.00

USD

First year costs

0.00 USD Energy (1st yeer)
0.00 USD Investment costs (1st year)
0.00 USD Installation $\&$ commissioning (1st year)
0.00 USD Operating cost (1st year)
0.00 USD Maintenance $\&$ repair (1st year)
0.00 USD Downtime (1st year)
0.00 USD Ervironmental (1st year)
0.00 USD Decommissioning (1st yeer)
0.00

USD

Disclaimer: The calculations and the results are based on user input values and general assurptions and provide only estimated costs for the input data. Xyleminc can therefore not guarantee that the estimated savings will actually occur.

Project

Project to	Creeted by

Created on

Last update 2/21/2018

BI-S Long-Term Lift Station Calculations

Wet Well Design Worksheet

Long-Term Flamingo East Parcel - Bl-S

Diameter $=$	6 ft		
Area $=$	28.27 Sq fi		
Vol./ft =	$211.5 \mathrm{ga} / \mathrm{ff}$		
Peak Flow In=	341 gpm		
Actual Pump Rate $=$	343 gpm		
$V=(Q T) / 4$ where,			
Q = Design Flow Rate =		343	
T = Assumed Cycle Time =		10	minutes
V = Volume $=$		857.5	gallons

The height to which this volume will rise in the wet well is calculated by the following equation.

$H=$ Volumel(Volume/foot of the wet well) $=$	4.05 feet
Use an actual height of:	4.00 feet

Check Pump Run-Time

Actual Pump Flow Rate $=$ Run-time $=$ Volume/ flow rate $=$

343 gpm
2.50 minutes

xylem

NP 3153 SH 3~ 276

Technical specification

Installation: P-Semi permanent, Wet

Note: Picture might not correspond to the current configuration.
General
Patented sel cieaning semi-open channel impelar, ideel for pumping in
waste water appicitions. Possible to be upgraded with Guide-pin or even bettor clogging resistance. Modult besed design with high adaptation grade.

Impallar
Impelior meterial
Olachurga Fling
Suction Flange Diameter
Suclion Flanga biameter
Number of biedes
Herdtion
31816 theh
31316 mat
190 mm
150 mm
2

Motor	
Molor	M3153. 185
Stator variant	
Frequency	60 Hz
Rated votage	460 V
Number of poles	2
Phases	30
Rated power	17 hp
Rated current	19 A
Starting current	111 A
Rated speed	3900 pm
Power fictior	
1/1 Land	0.94
$3 / 4$ Loed	0.92
1/2 Lasd	0.88
Pump Efficiency	
1/1 Lond	91.0\%
3/4 Lasd	92.0\%
1/2 Laxd	92.5\%

Conliguration

Performance curve

Pump		Motor
Discharge Fange Diameter	$315 \mathrm{H6}$ inch	Motor ${ }^{\text {\% }}$
Suction Range Diameter	150 mm	Stalor vaniant
Impeller diameter	61/4 ${ }^{\text {a }}$	Frequency
Number of blades	2	Prated voltage
		Number of poles
		Phases
		Rated power
		Rated cument
		Starting cument
		Ratad speed

N3153.185 21-18-2FB-W 17hp	Power factor	
1	$1 / 1$ Load	0.94
60 Hz	$3 / 4$ Load	0.92
460 V	$1 / 2$ Load	0.88
2	Pump Elliciency	
$3-$	$1 / 1$ Load	91.0%
17 hp	$3 / 4$ Load	92.0%
19 A	$1 / 2$ Load	92.5%
141 A		

Duty point
Flow Head
341 US g.p.m. $95.6 \mathrm{ft} \quad$ No
\square ? That by 2/21/2018 -
xylem
NP 3153 SH 3~ 276

Duty Analysis

xylem
NP 3153 SH 3~ 276

VFD Curve

xylem
NP 3153 SH 3~ 276

VFD Analysis

Pumps: running ISyation	Frequency	Flow	Heed	Shaft power	Flow	Heed	Shat power	Hyd off.	Spectifc energy	NPSHre
1	6012	33 us 9 mm	944	M6mp	399 USgpm	944n	146 p	583\%	sesmanus	142A
1	S9H2	3t3Uspm.	066π	1150	313 USg mm	8067	11.519	53\%	458 mmus	125
1	99月矿	musgrm.	6667	86719	2 USgm	$6{ }^{6} \mathrm{n}$	86710	5	4 tammus	1076
1	M91420	20usgpm	${ }_{51}$	639%	26 LSgmm	5	639%	563\%	33 MWNS	905
1	395	zousgmm.	0.6	2419	zusgpm		44%	503\%	20 MWH	

xylem
NP 3153 SH 3~ 276
Fint
Dimensional drawing

NP 3153 SH 3~ 276

Life cycle costs (LCC)

Total lifetime	15	Inflation rate (rate of price increases)	2%
Annual operating time	5600	Interest rate (for investment)	3%
Energy cost per liMh	0.00 USD		
Power input P1			

Total costs

First year costs

0.00 USD Energy (1st year)
0.00 USD Investment costs (1st year)
0.00 USD Installation \& commissioning (1st year)
0.00 USD Operating cost (1st year)
0.00 USD Maintenance \& repair (1st year)
0.00 USD Downtime (1st year)
0.00 USD Environmental (1st year)
0.00 USD Decommissioning (1st year)
0.00

USD

Disclaimer. The calculations and the results are based on user input values and genera/ assumptions and provide only estimated costs for the input data. Xyleminc can therafore not guarantee that the estimated savings will actually occur.

Appendix F. Flamingo Crossings Letter Agreement

UTILITIES DEPARTMENT
Raymond E. Hanson, P. E., Director
9150 Curry Ford Road
Orlando, Florida 32825-7600
Telephone: 407-254-9809
Fax: 407-254-9899
Email: Ray.Hanson@ocflnet

January 19, 2018
John H. Classe, Jr., District Administrator
Reedy Creek Improvement District
Post Office Box 10170
Lake Buena Vista, Florida 32830
Re: Amendment to 2012 Flamingo Crossings Letter Agreement for Water and Reclaimed Water Interconnection and Wholesale Service by and between Reedy Creek Improvement District (the "District") and Orange County Utilities (the "County") Dated December 19, 2012 (the "Letter Agreement")

Dear Mr. Classe:
Upon counter-signature of this letter below by the District, the Letter Agreement shall be amended as follows:

The introductory language of Section 3 is amended as follows (deletions are double strikethrough and insertions are bold and double underline):
3. Volume and Delivery of Potable Water and Reclaimed.
A. Potable Water. RCID shall provide up to 240,000 508,000 GPD annual average daily flow (AADF) of potable water to the County to serve its customers in the area of Flamingo Crossings Boulevard and at the point of connection as indicated in Exhibit "A."
RCID shall provide said potable water services at the following flows and minimum pressures in pounds per square inch ("psi") at the connection point:

```
170355 GPM @ 55 psi (AADF)
```

600-6PM-60-9si (Peak heurflow)
2040 2.710 GPM @ 45 psi (Maximum Daily demand plus Fire Flow)
B. Reclaimed Water. RCID shall provide reclaimed water to the County to serve its customers in the area of Flamingo Crossings Boulevard and at the point of connection as indicated in Exhibit "A" in an amount that does not exceed the volume of wastewater County delivers to RCID (as governed by the Substitute Letter Agreement for Orange Lake/Reams Road Letter Agreement for Wastewater Interconnection and Wholesale Service entered into on $6 / 21 / 11$, as amended) and in no event shall

Amendment to 2012 Flamingo Crossings Letter Agreement for Water and Reclaimed Water Interconnection and Wholesale Service by and between Reedy Creek Improvement District (the "District") and Orange County Utilities (the "County") Dated December 19, 2012 (the "Letter Agreement")
January 19. 2018
Page 2
exceed 1.0 million GPD nor cause the residual service pressure in the Flamingo Crossings area, as determined by RCID in its sole discretion, to drop below 50 psi. RCID chat providesadreclaimed-water-serviees the following minimum-prescures in pounder per equare-nch-("pe")- at the cOnnection point 600GRM-50-50

The Initial Term as set forth in Section 7 of the Letter Agreement is hereby extended to January 24, 2028.

All other terms of the Letter Agreement remain unchanged and continue in full force and effect. If you agree to these changes, please sign both copies of this letter amendment and return one execution original to my office.

Sincerely,

Raymond E. Hanson, P.E., Director Orange County Utilities Department

Signed and Agreed to:

John H. Classes, Jr. District Administrator
Reedy Creek Improvement District
Date: $\quad 1 / 24 / 18$

UTILITIES DEPARTMENT
Raymond E. Hanson, P. E., Director
9150 Curry Ford Road
Orlando, Florida 32825-7600
Telephone: 407-254-9809
Fax: 407-254-9899
Email: Ray.Hanson@ocfl.net

January 19, 2018
John H. Classe, Jr., District Administrator
Reedy Creek Improvement District
Post Office Box 10170
Lake Buena Vista, Florida 32830
Re: Amendment to 2017 Substitute Letter Agreement for Orange Lake/Reams Road Wastewater Interconnection and Wholesale Service by and between Reedy Creek Improvement District (the "District") and Orange County Utilities (the "County") Dated October 11, 2017 (the "Letter Agreement")

Dear Mr. Classe:
Upon counter-signature of this letter below by the District, the Letter Agreement shall be amended as follows:

The introductory language of Section 4.2 and subsections 4.2.1 and 4.2.2 are amended as follows (deletions are double strikethrough and insertions are bold and double underline) (subsection 4.2.3 remains unchanged):
4.2 RCID agreed to accept, treat and dispose or reuse up to $2,350,000$ $\underline{\mathbf{2}, 535,000}$ gallons per day (gpd) annual average flow (AADF) of wastewater from the combination of the Reams Road and Orange Lake connection points upon the in-service date of the new force main referred to in Sections 2.2 and 3-for-a-term-ef-fifteen-yeare, subject to other provisions of this 2017 Substitute Letter Agreement.
4.2.1 Reams Road: RCID agrees to accept, treat and dispose/reuse up to 2, 100,000 gpd AADF (and 2,917 gpm PHF) of wastewater flow at Reams Road as of the Effective Date of this 2017 Substitute Letter Agreement. Upon 30 days written notice by RCID, the capacity at the Reams Road connection can be reduced to 2,000,000 gpd AADF (and 2,778 gpm PHF).
4.2.2 Orange Lake: RCID agrees to accept, treat and dispose/reuse up to $250,000435,000 \mathrm{gpd}$ AADF (and 624900 gpm PHF) of wastewater flow at Orange Lake as of the Effective Date of this 2017 Substitute Letter Agreement. The County's delivery of wastewater to the Orange Lake connection point shall not exceed

Amendment to 2017 Substitute Letter Agreement for Orange Lake/Reams Road Wastewater Interconnection and Wholesale Service by and between Reedy Creek Improvement District (the "District") and Orange County Utilities (the "County") Dated October 11. 2017 (the "Letter Agreement ${ }^{*}$)
January 19. 2018
Page 2
$250,000435,000 \mathrm{gpd}$ AADF and 624900 gpm PHF without prior written notification to RCID and receipt of written approval from REID.

Sections 7 and 9 of the Letter Agreement are deleted in their entirety. The Letter Agreement is effective as of the date it was signed by the last Party thereto and shall be effective until January 24, 2028 (the "Initial Term"). The Letter Agreement shall be renewed automatically for two (2) successive terms of five (5) years beyond the Initial Term unless either Party provides written notice to the other Party at least one (1) year prior to the expiration of the Initial Term or at least one (1) year prior to the expiration of the first renewal term that the Party does not intend to renew the Letter Agreement.

All other terms of the Letter Agreement remain unchanged and continue in full force and effect. If you agree to these changes, please sign both copies of this letter amendment and return one execution original to my office.

Sincerely.

Date: \qquad
Raymond E. Hanson, P.E., Director Orange County Utilities Department

Signed and Agreed to:

John H. Classe, Jr. District Administrator
Reedy Creek Improvement District
Date: $\quad 1 / 24 / 18$

Appendix G. Parcel Topographic Map

Figure G-1 FC-1 Topographic Map

Figure G-2 FC-2 Topographic Map

Figure G-3 BI North and South Topographic Map

Appendix H. Existing FC West Pump Station Pump Curve

Engimeering Submittal \#H

Accessories

Specials: (3) Mini-Cas

Please Confirm Voltage For This Station

FLAMINGO CROSSING PH 1 BP 1-2-RCID

C-3201

Motor Data

Cable Data

HP	VOLTS	MAX. LENGTH FT.	CABLE SIZE/ NOMINAL DIA.	CONDUCTORS (N ONE CABLE)	PART NUMBER
	*:200	165			
30 (4 pote)	**230	220			
30 (4 poie)	460	450			
	575	700			
30 (ep pole)	**200	170	$\begin{aligned} & 5 / 3-2-1-\mathrm{GC} \\ & 31.0\left(1.22^{n}\right) \end{aligned}$	(3) 6 AWG (PWA) (2) 10 AWG (CTRL) (1) 8 AWG (GND) (1) 10 AWG (GC)	942109
	**230	230			
	460	450			
	575	700			
$35 \& 40$	**200	145			
	$* * 230$ 460	170 335			
	575	510			,
47	**200	110			
	${ }^{* * 230}$	145			
	460	290			
	575	455			

C-3201

REQUIREMENTS

Furnish and install 3 submersible non-clog wastewater pump(s). Each pump shall be equipped with an 47 HP submersible electric motor connected for operation on 460 volts, 3 phase, 60 hertz, 4 wire service, with ___ 50 feet of submersible cable (SUBCAB) suitable forsubmersible pump applications. The power cable shali be sized according to N.E.C. and ICEA standards and also meet with P-MSHA Approval. For 230 yolt service, two power cables shall be used to share the load and thus keep power cables to a manageable size. The purnp shall be supplied with a mating cast iron 6 inch discharge connection and be capable of delivering_ 800 GPM at_113' TDH.An additional point on the same curve shall be GPM at ____ feet total head. Shut off head shall be 168 feet (minimum). Each pump shall be fitted with_25 feet of 304 SS Grlp-Eye Cables.
\square The working load of the lifting system shall be 50% greater than the pump unit weight.

PUMP DESIGN

The pump(s) shall be automatically and firmly connected to the discharge connection, guided by no less than two guide bars extending from the top of the station to the discharge connection. There shall be no need for personnel to enter the wet-well. Sealing of the pumping unit to the discharge connection shall be accomplished by a machined metal to metal watertight contact. Sealing of the discharge interface with a diaphragm, O-ring or profile gasket will not be acceptable. No portion of the pump shall bear directly on the sump floor.

PUMP CONSTRUCTION

Majorpump componentsshallbe ofgreycastiron,ASTM A-48, Class 35B, with smooth surfaces devoid of blow holes or other irregularities. All exposed nuts or bolts shail be AlSI type 304 stainjess steel construction. All metal surfaces coming into contact with the pumpage, other then stainless steel or brass, shall be protected by a factory applied spray coating of acrylic dispersion zinc phosphate primer with a polyester resin paint finish on the exterior of the pump.

Sealing design shall incorporate metal-to-metal contact between machined surfaces. Critical mating surfaces where watertight sealing is required shall be machined and fitted with Nitrile or Viton rubber O-rings. Fittings will be the result of controlled compression of rubber O-rings in two planes and O-ring contact of four sides without the requirement of a specific torque limit.

Rectangular cross sectioned gaskets requiring specific torque limits to achieve compression shall not be considered as adequate orequal. No secondary sealing compounds, elliptical O-rings, grease or other devices shall be used.

COOLING SYSTEM

Each unitshall be provided with an adequately designed cooling system. The water jacket shall encircle the stator housing; thus, providing heat dissipation for the motor regardless of the type of installation. Impeller back vanes shall provide the necessary circulation of the cooling liquid through the water jacket. The cooling media channels and ports shall be non-clogging by virtue of their dimensions. Provisions for external cooling and seal flushing shall also be provided. The cooling system shall provide for continuous pump operation in liquid temperature of up to $104^{\circ} \mathrm{F}$. Restrictions below this temperature are not acceptable.

CABLE ENTRY SEAL

The cable entry seal design shall preclude specitic torque requirements to insure a watertight and submersible seal. The cable entry shall consist of a single cylindrical elastomer grommet, flanked by washers, all having a close toferance fit against the cable outside diameter and the entry inside diameter and compressed by the body containing a strain relief function, separate from the function of sealing the cable. The assembly shall provide ease of changing the cable when necessary using the same entry seal. The cable entry junction chamber and motor shall be separated by terminal board, which shall isolate the interior from foreign materlal gaining access through the puimp top. Epoxies, silicones, or other secondary sealing systems shall not be considered acceptable. \sim :

MOTOR

The pump motor shall be a NEMA B design, induction type with a squirrel cage rotor, shell type design, housed in an air filled, watertight chamber. The stator windings shall be insulated with moisture resistant Class H insulation rated for $180^{\circ} \mathrm{C}\left(356^{\circ} \mathrm{F}\right)$. The stator shall be insulated by the trickle impregnation method using Class H monomer-free polyester resin resulting in a winding fill factor of at least 95%. The motor shall be inverter duty rated in accordance with NEMA MG1, Part 31. The stator shall be heat-shrink fitted into the cast iron stator housing. The use of multiple step dip and bake-type stator insulation process is not acceptable. The use of bolts, pins or other fastening
devices requiring penetration of the stator housing is not acceptable. The motor shall be designed for continuous duty handling pumped media of $40^{\circ} \mathrm{C}$ ($104^{\circ} \mathrm{F}$) and capable of up to 15 evenly spaced starts per hour. The rotor bars and short circuit rings shall be made of cast aluminum. Thermal switches set to open at $125^{\circ} \mathrm{C}\left(260^{\circ} \mathrm{F}\right)$ shall be embedded in the stator end coils to monitor the temperature oieach phase winding. These thermal switches shall be used in conjunction with and supplemental to external motor overload protection and shall be connected to the control panel. The junction chamber shall be sealed off from the stator housing and shall contain a terminal board for connection of power and pilot sensor cables using threaded compression type terminals. The use of wire nuts or crimp-type connectors is not acceptable. The motor and the pump shall be produced by the same manufacturer.

The combined service factor (combined effect of voltage, frequency and specific gravity) shall be a minimum of 1.15 . The motor shall have a voltage tolerance of plus or minus 10%. The motor shall be designed for operation up to $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ ambient and with a temperature rise not to exceed $80^{\circ} \mathrm{C}$. A performance chart shall be provided upon request showing curves for torque, current, powerfactor, input/ output kW and efficiency. This chart shall.also include data on starting current and torque.

The power cabla shall be sized according to the NEC and ICEA standards and shall be of sufficient length to reach the function box without the need of any splices. The outer jacket of the cable shall be oll resistant chlorinated polyethylene rubber. The motor and cable shall be capable of continuous submergence underwater withoutloss of watertight integrity to a depth of 65 feet or greater.

The motor horsepower shall be adequate so that the pump is non-overloading throughout the entire pump performance curve from shut-off through run-out.

beARINGS

The pump shaft shall rotate on two bearings. Motor bearings shall be permanently grease lubricated. The upper bearing shail be a single rollerbearing. Thelower bearing shall be a two row angular contact bearing to compensate for axial thrust and radial forces. Single row lower bearings are not acceptable.

MECHANICAL SEAL

Each pump shall be provided witha tandemmechanical
shaft seal system consisting of two totally independent seal assemblies. The seals shall operate in an lubricant reservoir that hydrodynamically lubricates the lapped sealfaces ata constantrate. Thelower, primaryseal unit, located between the pump and the lubricant chamber, shall contain one stationary and one positively driven rotating, corrosion resistant tungsten-carbide ring. The upper, secondary seal unit, located between the lubricant chamber and the motor housing, shall contain one stationary and one positively driven rotating, corrosion resistant tungsten~carbide seal ring. Each seal interface shall be held in contact by its own spring system. The seals shall require nelther maintenance nor adjustment nor depend on direction of rotation for sealing. For special applications, other seal face materials shall be available.

The following seal types shall not be considered acceptable nor equal to the dual independent seal specified: shaftseals without positively driven rotating members, or conventional doubla mechanical seals containing either a common single or double spring acting between the upper and lower seal taces. No system requiring a prassure differential to offset pressure and to effect sealing shall be used.

Each pump shall be provided with an lubricant chamber for the shaft sealing system. The lubricant chamber shall be designed to prevent overililing and to provide lubricant expansion capacity. The drain and inspection plug, ${ }_{1}$ with positive anti-leak seal shall be easily accessible from the outside. The seal system shail not rely upon the pumped madia for lubrication. The motor shall be able to operate dry without damage while pumping under load.

Seal lubricanf shall be FDA Approved, nontoxic.

PUMP SHAFI

Pump and motor shaftshall be the same unit. Thepump shaftis an extension ofthe motor shaft. Couplings shall not be acceptable. The pump shaft shall be of carbon steel ASTM A 572 and shall be completely isolated from the pumped liquid.

IMPELLER

The impoller(s) shall be of gray cast iron, Class 35B, dynamically balanced, double shrouded non-clogging design having a long throughlet without acute turns. The impeller(s) shall be capable of handling solids, fibrous materials, heavy sludgeand other matter found in wastewater. Whenever possible, a full vaned, not vortex, impaller shall be used for maximum hydraulic

C-3201

efficiency; thus, reducing operating costs. Impeller(s) shall be keyed to the shaft, retained with an Allen head bolt and shall be capable of passing a minimum 3.0 inch diameter solid. All impellers shall be coated with an acrylic dispersion zinc phosphate primer.

WEAR RINGS

A wear ring system shall be used to provide efficient sealing between the volute and suction inlet of the impeller. Each pump shall be equipped with a brass, or nitrile rubber coated steel ring insert that is drive fitted to the voiute inlet.

This pump shall also have a stainless steel impeiler wear ring heat-shrink fitted onto the suction Inlet of the impeller.

VOLUTE

Pump volute(s) shall be single-piece grey cast tron, Class 35B, non-concentric design with smooth passages large enough to pass any solids that may enter the impeiler. Minimum inlet and discharge size shall be as specified.

PROTECTION

All stators shall incorporate thermal switches in series to monitor the temperature of each phase winding. The thermal switches shall open at $125^{\circ} \mathrm{C}\left(260^{\circ} \mathrm{F}\right)$, stop the motor and activate an alarm.

A leakage sensor shall be available as an option to detect water in the stator chamber. The Float Leakage Sensor (FLS) is a small float switch used to detect the presence of water in the stator chamber. When activated, the FLS will stop the motor and send an alarm both local and/or remote. USE OF VOLTAGE SENSITIVE SOLIDSTATE SENSORSANDTRIP TEMPERATURE ABOVE $125^{\circ} \mathrm{C}\left(260^{\circ} \mathrm{F}\right)$ SHALL NOT BE ALLOWED.

The thermal switches and FLS shall be connected to a Mini CAS (Control and Status) monitoring unit. The Mini CAS shall be designed to be mounted in any control panel.
\square

MODIFIGATIONS

1. Explosion-proof Pumps (X).
\square
Reier to the General Guide Specifications for additional information.

C-3201

ITT FLYGT WARRANTY

For the period defined, ITT FLYGT offers a commercial warranty to the orlginal End Purchaser agalnst defects in workmanship and material. Warranty covers parts and labor as outlined in ADDENDUM - A.

COVERAGE:

ITT FLYGT will pay the cost of parts and labor during the warranty perlod, provided that the product, with cable attached, is returned prepaid to an ITT FLYGT Authorized Service Facility for repairs. Coverage for parts and labor will be provided for the perlod shown In ADDENDUM - A. The warranty period will begh from date of shipment or date of a valid Startup (For permanently installed pumps only). In cases where the Start-up date is used as the beginning of the warranty on a permanently installed pump, a Start-up Report completed by an approved service technician from an ITf FLYGT Authorized Service Facllty must be received by the ITT FLYGT Area Service Manager within thirty (30) days of the initial onset of the unit placed into service. If not received, the beginning of the warranty coverage will default to the product ship date. A start-up for a permanently installed pump must occur within one (1) year from the date of shipment from IT FLYGT or warranty will automatically default to shlp date as start of warranty. (See STORAGE section). When using the start-up date as the beginning of the warranty period then a copy of the Start-up Report is required to support a Warranty Claint. Warranty on Dewatering pumps will begin with ship date.

ITT FLYGT'S sole obligation under this Warranty shall be to replace, repair or grant credit for product upon ITT FLYGT'S exclusive determination that the product does not conform to the above warranty. In the event that the product is replaced, warranty on the replacement produci will be equal to the balance remaining on the original product or ninety (90) days, which ever is greater.

MISUSE:

This Warranty shall not apply to any product or part of product which (I) has been subjected to misuse, misapplication, accident, alteration, neglect, or physical damage (il) has been installed, operated, used or maintained in a manner and/or In an application contrary to ITT FLYGT's printed instructions for installation, operation and maintenance, including whthout limitation operation without being contiected to monitoring devices supplied with specific products for protection; or (iii) has been damaged due to a defective power supply, improper electrical protection, faulty installation or repair, ordinary wear and tear, corrosion or chemlcal attack, an act of God, an act of war or by an act of terrorism; or (iv) has been damaged resulting from the use of accessory equipment not sold by ITT:FLYGT or not approved by ITT FLYGT in connection with the product.

WEAR PARTS:

This warranty does not cover costs for standard and/or scheduled maintenance performed, nor does it cover parts that, by vitue of their operation, require replacement through normal wear (aka: Wear Parts), unless a defect in material or workmanship can be determined by ITT FLYGT. Wear Parts are defined as eutters, Cutting Plates, Impellers, Agitators, Diffusers, Wear Rings (Stationary or Rotating), Volutes (when used in an affasive environment), oil, grease and/or any items deemed necessary to perform normal maintenance on ITT FLYGT equipment. '

DISCLAIMERS:

(i) ITT FLYGT'S warrantles are null and void when the product is exported outside of the United States of America without the knowledge and written consent of IIT Flygt US; (ii) ITT FLYGT makes no independent warranty or representation with respect to parts or products manufactured by others and provided by ITT FLYGT (however, ITT FLYGT will extend to the Purchaser any warranty received from ITT FLYGT'S supplier of such parts or products).

ITT FLYGT WARRANTY

LIMITATIONS:

ITT FLYGT NEITHER ASSUMES, NOR AUTHORIZES ANY PERSON OR COMPANY TO ASSUME FOR ITT FLYGT, ANY OTHER OBLIGATION IN CONNECTION WITH THE SALE OF ITS EQUIPMENT. ANY ENLARGEMENT OR MODIFICATION OF THIS WARRANTY BY A DISTRIBUTOR, OR OTHER SELLING AGENT SHALL EECOME THE EXCLUSIVE RESPONSIbILITY OF SUCH ENTLTY.

THE FOREGOING WARRANTY IS EXCLUSIVE AND IN LIEU OF ANY AND ALL OTHER EXPRESS OR IMPLIED WARRANTIES, GUARANTEES, CONDITIONS OR TERMS OF WHATEVER NATURE RELATING TO THE PRODUCT(S), INCLUDING WITHOUT LIMITATTON ANY IMPLIED WARRANTIES OF MERCHANTABILITY.AND FITNESS FOR A PARTICULAR PURPOSE WHICH ARE HEREBY EXPRESSLY DISCLAIMED AND EXCLUDED. PURCHASER'S EXCLUSIVE REMEDY AND TT FLYGT‘S AGGREGATE LIABILITY FOR BREACH OF ANY OF THE FOREGOING WARRANTIES [S LIMITED TO REPAIRING OR REPLACING THE PRODUCT AND SHALL IN ALL CASES BE LIMITED TO THE AMOUNT PAID BY THE PURCHASER HEREUNDER. IN NO EVENT IS ITT FLYGT LIABLE FOR ANY OTHER FORM OF DAMAGES, WHETHER DIRECT, INDIRECT, LQUIDATED, INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY OR SPECIAL DAMAGES, INCLUDING BUT NOT LIMITED TO LOSS OF USE, LOSS OF PROFIT, LOSS OF ANTICIPATED SAVINGS OR REVENUE, LOSS OF INCOME, LOSS OF BUSINESS, LOSS OF PRODIUCTION, LOSS OF OPPORTUNITY OR LOSS OF REPUTATION.

ITT FLYGT WILL NOT BE HELD RESPONSIBLE FOR TRAVEL EXPENSES, RENTED EQUIPMENT, OUTSIDE CONTRACTOR'S FEES, EXPENSES PERFORMED BY AN UNAUTHORIZED REPAIR SHOP, UNAUTHORIZED ALTERATIONS, OR FOR PUMPS USED WITHOUT ITT FLYGT SUPPLIED CABLE OR CONTROLS UNLESS IT CAN BE PROVEN SUCH ANCILLARY EQUIFMENT IS SUITABLE FOR THE PURPOSE AND EQUAL TO ITT FLYGF CABLES OR CONTROLS THAT WOULD ORIGINALLY BE SUPPLIED WITH THE TYPE OF EQUIPMENT IN USE. REIMBURSEMENT COSTS FOR CRANES AND/OR ANY SPECIAL EQUIPMENT USED IN CONJUNCTION FOR THE REMOVAL OR REINSTALLATION OF ANY IIT FLYGT EQUIPMENT IS NOT COVERED UNDER THIS WARRANTY.

REQUIREMENTS:

\because
A copy of Electrical System Schematics of the control used (induding Control's Bill of Material) could be required to support a Warranty Claim when a non Flygt control is used. In addition, a written record, hereby known as "the log", will be assoclated with each unit serial number and must be maintained by the organization having product maintenance responsibility. The log must record each preventative maintenance activty and any repalr activity during the life of the warranty or verifleation that a Flygt authorized Service Contract is in force and is available for review and/or auditing. Failure to meet these conditions could render this warrant null and void. Such logs could be required to determine warranty coverage.

STORAGE:

$=$
Should a delay occur between shlp date and the date of start-up, mainterance as outined in ITT FLYGT's care \& Maintenance Manual must be performed by the "CONTRACTOR" and/or "OWNER" during any such period of storage. Documentation providing proof and outlinfing what maintenance was performed must be provided to ITT FLYGT or its representative within thisty (30) days of said maintenance, or the ITT FLYGT warranty could be considered vold.

ITT

Engratrotiotioc

ITT FLYGT WARRANTY

CONTROLS:

Warranty coverage for permanently installed controls start on date of shipment to end purchaser. This warranty does not apply to controls that have been damaged due to a defective and/or improper input power supply, improper electrical protection, accidental damage, improper or unauthorized installation and/or repair, unauthorized alteration, negligence, environmental corrosion or chemical attack, improper maintenance or storage of control, any act of God, an act of war, an act of terrorism or damage resulting from the use of accessory equipment not approved by ITT Flygt. Further, this warranty does not apply in the event an adjustment is found to correct the alleged defect.

Solid state devices will be covered for a period of one year. Electrical control panels containing controlers, PLC's, drives, soít starts, and other computerized equipment require Transient Voltage Surge Suppression (TVSS) protection in order to satisfy the requirements of this warranty. The protection equipment associated with the control must be kept in working condition during the life of the warranty. Auxllary equipment supplied with the control (alr-conditioners etc.) is limited by the respective origlnal equipment manufacturer's warranty offered. Components not supplied by Flygt are not covered by this warranty.

rops (The Optimum Pump Station)

ITT Flygt will warrant the TOPS pre-engineered fiberglass pump station components against defects in material and workmanship for a period of one (1) year from date of start-up or eighteen (18) months from date of shipment, whichever is sooner to the original owner of the station. Warranty shafl cover the cost of labor and materials, excluding removal and reinstallation costs, required to correct any warrantable defect, FOB, Manufacturer's authorized warranty service location, ITT Flygt products contalned within a TOP5 pre-engineered fiberglass pump station will carry the standard ΠT Flygt warranty for the product and/or accessory installed in the TOPs pre-engineered flberglass pump station.

All restrictions and/or limitations as outlined and described within the context of this warianty are germane to all sections of this IT Flygt Warranty document.

ITT Flygt US

Wational Quality Assurance - US Corporate prodqual@ill.com

ITT

Easmusthuther

ITT FLYGT WARRANTY

ADDENDUM - A
WARRANTY COVERAGE BY PRODUCT

Section 2 wnere $\because:$ Flygt Pumps \quad Issued: 6/80 \mid Supersedes: $2 / 88$

The laultless lunctioning of a Flygt Pumping Station will depend upon the correct selection of the pump to suit system requirements and proper installation. Agreat majority of Fiygl Electric Submersible Waslewaler Pumps are. installed in underground wei pils with Automatic Discharge Connections, Gulde Bars and Access Covers as shown in the station drawings. Wet Pits constructed of precast concreta rings offer significant savings in labor costs over pourad-in-place concrete, masonry or brlck and are universally accepted tor use in sanitary or storm sewer systams. Precast concretesections are availabla up to 120 Inch inside diameter (sometimes up to 14 inch $^{\text {In }}$ Inside diameter) throughout the U.S. and are generally manufactured in accordance with the provisions. of ASTM Speciflcation C478

Because of this, Fyyg Cofporation's official engineering docurnentation is based on stations designed in precast concrete circularman-holes. Eachindlvidual stationdrawing shows a suggested Simplex and a suggested Duplex PumpingStallon bult of precast concretesections installed between a Eottom Slab and a Top Slab the Top Slab, usually atground level, contalns the cast-in Access Cover). The contigurations and dimensions shown on these Proposed Layouls are suggested minimum requirements only, all details, including sizing of pll, typer size, location and arrangement of valves and piping, etc. are to be specilied by the Consulting Engineer andare sublect to his approval.

The following is a partlal list of useful suggestons for construction and installation. (Please always observe local regulations applicabie).

A. Excavation:

Excavate a large enough hole to provide sutficient working room around the statlon. The oulside dlameter of the Bottom Slab should be at least one foot laiger than that of the concrele sections used.

日. Conneoting Plpes:

Provide connecting holes for the Inlluent Pipe, Effluent Fipe(s) and Cable Thrulats in eccordance with the Engineer's specitication. Flexible joints outside of concrete wall will reduce the danger of dislocation due to settement.

C. Backfill:

Backill gradually and bvenly around station after concrate and Joints have hardened. Compact backill to minimize post-Installation setllement.

D. Top S!ab with Access Cover:

Diameter of Top Slab shall be alleast two leet larger inan O.D. of ring sections. The Access Cover must be installed and properly ontented in the Top Slab.

1. See Station Drawngs for Pump Model and Access Cover location in relation to the cenlerline of the station.
2. Positloning of the Hinge Side of the Cover (See Accessorles Section).
3. The Top Slab and Access Cover must be level.
4. For Heavy Duty Covers
(See Accessories Section).

E. Automatic Discharge Comnection:

The Automatic Discharge Connectlon must be attrached to the Bottorn Slab at the exactlocation required relative to the Access Cover.

SUGGESTED PROCEDURES:

1. Aftach the Upper Guide Bar Bracket(s) to the Access Frame (See Accessories Sectlon). Also, the centerifine of the Bracket(s) will detemine the centerline of the installed pump(s).
2. Place thepump Discharge Connection(s) ontha Bottom Slab and line up as shown in the Accessories Section.
3. Cut to length and install the Guide Bars between the Upper Guids Bar Bracket(s) and Dlscharge Connection(s).
4. Before secuing anchor bolt nuts, check across the Discharge Connectlon(s) Outlat Flange(s) face with level and shin if necessary. Gulde Bars should be Parallel and Vertical.

F. Internal Piping and Manifold:

Use proper gaskets, tighten bolks gradually and evenly. In deep statlons, install Dlscharge pipe Brackets to relleve Discharge Connections from overload and intermedlate Guida Bar Brackats to prevent Gulde Bars from bending.

Installation Procedures

Section 2. xater $\therefore \therefore$ Flygt Pumps \quad Issued: 6/90 \quad Supersedes: 2/88

G. Installation of Pump Unlts:

Lower Pump Units into place along guide bars. Check visually metal-to-melal conlact between Volute Flange and Discharge Connection.lf necessary, re-check and reallignDlscharge Connection(s) and GuldeBars with pumps in place.

H. Groutling:

After properallgnment of all components, including metal-to-metal connectlon of pump flange is astablished, grout Access Cover, DischargeConnection(s) and Plpe Thrulets. Bulld up and shape slopes at bottom of the station as shown in Station Drawinge. Thls will help in preventing bulld-up of sollds at the bottom where slde walls meet the floor.

1. Surtace Protectlon:

An epoxy-coal tar system is suggested for all Internal surfaces, concrete or metallic, if possible, follow the recommendations in WPCF Manual of Practice No. 17 -Paints and Protecive Coatings forWastewater Treatment Facilities" or the instructions of a reputable manulacturer of protectivacoating systems, such as Carbollne, Koppers, Inettol, Perry-Austen, etc. Proper surfacepreparation and caretul application will pay off in reduced malntenance costs and longer ilfe.
J. Storage of Pump Unlts Prior to Start-Up: It is not good pracllce to store the Pump Unils in the wet pit, especially when long perfods between instalkation and start-up areantcipated. If this practice cannolbe avolded, rather thanleaving them on their Dlscharge Connections, secure them and their power cable at some point above any anticlpated liquid level. Pay special aitention to unprotected open cable ends; seal them off and make sure that they are not submerged or exposed to molsture. Penetration of moisture thru the cable may cause breakdown of the insulation, arcing at the pump terminal board, destructlon of the Junction Chamber and serious damage to the pump. It in doubt, before start-up, recheck the cable, Cable Entry and Junction Chamber following instructions in the Maintenance Manual under "Electrical Checks'. If possible, connect Pumps power cables to Control Panel and duringlonger periods untll the official starl-up, start and run the unlts manually for 30 seconds atleast once every two weaks. (see "Storage" in this section.)

Storage

Each Flygt pump leaves the factory properly assembled and prepaired to perform even after a reasonable idle time in storage. However, as prolonged idle time can be detrimental to any rotating machinery, the procedures outting below should be followed in order to insure that the equipment is in top conditton to oparate when flnally installed. Whenever possibie, store pumping units in a dry environment free of extremie temperatures and strong direet sunlight.

NEW pumps:

Storage 6 to 12 montha:

In general, rotaling machiney left Idis for exlended perlods of time, tends to establish a "set" position due to inaction of themovingparts. Some of these areasmaybe damaged (especially seals) from the sudden fast breakaway of start-up after a prolonged Idle lime. To insure that all rotaing parts are free for final installation and start-up, it is good practice to rolate the impeller by hand onee a month. Itls also good practice to relieve the tension on the cable entry sealling grommet by backling off the cable entry compression scraws slightly. If this is done, Itis most important that a clear note be attached as a reminder to: Re-Tighten Cable Entry Compression Screws Before installation.

Storage 12 to 24 months:
In addition to the above, apply a protective spray coating of silicone or rust inhibiting oil to the impeller and inside of the volute by spraying in through the volute outtet and up through the volute inlet. Also coat the volute outlet flange face.

USED pumps:

Before storing a used pump for an extended period of time, the unlt should be dismantled, checked for any defects, repatred where necessary and reassembled. At reassembly, follow Instructions in the Service Manual, especlally regarding seal assemblles. Protect the impeller and volute as mentloned in the paragraph above.

In all casos, it is good practice to check all external bolts, nuts and screws for tightnese betore final Insiallation after extended storage.

CONTROLS:

It is most imporkant to make sure that Electrical Controls, when subjectedto extended storage, be stored in aprotected dry environment. free from any carrosive almosphere. Molsture in any form, inciuding condensation, can cause serious corrosion problams to the contactpoinl surfaces as wall as terminal connections.

Even though all terminal connectlons have been made tight on initlal assembly at the factory, they maynotremain 100% tight over an extended storage perlod due to the compressibllity of the copper wire and possible movement due lo variations in ambient temperature. The problem will vary in degree depending on wire size and whether the terminal connectlon is of solld or stranded vire. To insure proper operation, recheck all terminal connection screws for lightness prior to placing the control on line.

Explosionmproof Pumps

Exploslon-proof Pumps for Hazardous Locations
ITTFygiÉlectric Submersible Exploslon-proof Wastewater Pumps are examined; tested, and approved by Factory Mutual Research (FM) as Explosion-proof. They conform to the latest editlon of the National Electrical Code (NEC), Articles $500,501,502$, and 503 requirements as explosion proof and suitable for use in Class I, Division 1, Groups C and D_{1}, and dust ignition proof and suilable for use in Class III, Division 1; Groups E and G hazardous locatlons, and suitable for use InClass lil, Division 1 hazardous locations. FM approval also meets OSHA (Occupational Safety and Health Administration) requirements.

Deffitition of Hazardous Locations by NEC

Class i locations are those in which flammable gases or vapors are or may be present in the air in quantitles sufficient to produce explosion or ignitable mixtures.

Class I, Division 1 location is a location: (1) in which ignitable concentrations of tlammable gases or vapors exist under normal operating condilions; or (2) in which. ignitable concentralions of such gases or vapors may exlst frequently because of repalr or maintenance operations or because of leakage; or (3) in which breakdown or faulty operatlon of equipment or processes mightreleáse ignitable concentrations of flammable gases or vapors, and might also cause simultaneous fallure of electric equipment.

Class Il locations are those that are hazardous because of the presence of combustible dust.

Class II_{I} Division 1 location is a location: (1) in which combustible dust is in the air under normal operating condilions in quantities sufficient to produce explosive or ignitable mixturss; or (2) where mechanlcel failure or abnormal operation of machinery or equipment might cause such explosive or ignitable mixtures to be produced, and might also provide a source of ignition through .simutaneous fallure of electric equipment, operation of protection devices, or from other causes; or (3) In which combustlble dusts of an eiectrically conductive natura may be present.

Class ill focations are those that ara hazerdous because of the presence of easily ignllable fibers or flyings but not likely in alr suspension in quanitles sufficient to produce Ignifable mixtures.

Class Ill, Division 1 location la one in which aasily ignitable flibers or materlals producing combustlble flyings are handled, manufactured, or used.

Speclal Features

The construction of an Explosion Prool pump is similar in most respects to the standard wastewater pump, but differs in the following details:

1. Hydrostallcally pressure tested high strength, cast iron housings are designed to wilhstand an Internal explosion and have long tight flame paths to reduce extt temperature of any exploding. gases to a value below the Ignitton temperature of the surrounding environment.
2. All pumps have required pllot thermal sensors embedded in stator windings, to guerantee that the pump surface temperature never exceeds safe limits, avoiding possible environmental lgnition.
3. Externally mounted leakage sensors may not be used unless explosion proof or intrinsically safe (consult factory for detalls).
4. Special approved power cables required: Flygt SUBCAB.
5. All pumps, except $3075(X), 3085(X), 3102(X)$ and $3127(x)$, have a special stator inspection plug. The $3075(X), 3085(X), 3102(X)$ and $3127(X)$ stator housings are inspected for leakage through the cable entry. Here, penetration of oll from the oif chamber below, or water from the functionchamber above canbedetected.
6. ITT Flygt controls supplied with these pumps incorporate the following required circuits:

A. Motorpilot themalsensors (connectionls approval mandatory).

B. Intrinsically safe relays for ENM-10 level sensors (or equal) - usage is mandatory.

CAUTION: All controls, used wilh these pumps but not supplied by ITT Flygt, must be designed according to the latest applloable standards. See Tab Section 11 for addltional detalls and requirements.

Environmental Limits ${ }^{\text {' }}$

The maxlmum temperature of exposed (external) pump surfaces is sell controlled by the motor pllot thermal switches. Meximum allowed amblent (environmental) temperature is. $115^{\circ} \mathrm{F}\left(46^{\circ} \mathrm{C}\right)$.

PAGE	SECTION
4	8
ISSUED	SUPERSEDES
$3 / 96$	$6 / 94$

Explosion-proof Pumps

CAUTION: To maintain APPAOVAL, the pump cannot be altered without Factory Mutual permission and service mustbedone by an Explosion-proof CERTIFIED repairman. For training and certiflication detaifs, consult faclory.

Appilcation of Explosion-proof Pumps

These purnpe may be used in sewage wet wells that are classilled as Class I, Division 1, Groups C and D hazardous locations (gases and vapors). Thay can also be used in applications that are clessified as Class II, Division \dagger_{1} Groups E and G hazardous locatlons (lyplifed by grain or coal storage); also, Class III, Dkislon 1 locatlons (libers and flyings).

Other areas, which may be classified hazardous under normal condiflons and where the use of Explosion-prool pumps for handling contaminated wastewater is required are: reflneries,"petrochemical industry locations, tank farms, gas utilityvaults, etc, alwaystakinginto consideration that these pumps are not designed or approved as process pumps dellberately and protractedly handling high concentrations of hazardous liquids, e.g.: gasoline, etc.

Limitations

1. CP/CS, DP/DS and FP/FS $3085(X)$ does not oplionally have aterminal board as does the standard version.
2. $\mathrm{CP} / \mathrm{CT} / \mathrm{CS}$ and $\mathrm{HP} / \mathrm{HS} 3201(\mathrm{X})$ for 230 volf service requires two (2) 6/3-2-1 power cables.
3. Nons of these Explosion-proof pumps is available in the Warm Liquid (WL) Variant.

Division 2; All Classes: For Class I or II locations; a Olvision 2 designation means that the ignitable or combustble materlals will not normally be present in hazardous concentrations exoept by accident or malunctions of containing or protective systems. In Class III locations, Division 1 and 2 are almost the same (check NEC Arilcle 503).
Equipment approved as sultable for use In Division 1 locetions is autornatically sultable for use in Dlysion 2 looations. However, if the. Authority Having Jurlsdiction has dellillely defined the area as Division 2, standard submersible pumps (motors) may be used so long as they do not oontaln any open (non-hermetically seated) ignition sources (See NEC Article 501-8 and 502-8) and use motor pllot thermal switches to limit surface temperatures. Standard ITT Flygt submersible pumps meet these requirements.

Classification

A sewage wet well (or any other wastewater collection locatlon) is not automatically a hazardous focation. The neture and classitication of any locatlon musl be determined and Indicated by whoever is considered to be the Authortty Having Jurisdiction.
This Authority is not always easily determined. Care and dillgence must be exercised to make sure, once a preliminary Identification has been made، that there is not some other superseding Authority.

Depending on the type and geographical position of the "locatlon'", the Authority may range the gamut from a federal agency to state, reglonal, local agencies or the consulting or plant engineer. Often the best source of information is the state Administrattive Code or a state agency such as a Department of Environmenial Protection (DEP), Environmental Protection Agency (EPA), Department of Healih, etc.

Approval Fequirements (NEC/Factory Mutual)

Class 1, Division 1: sultabla equipment must be explosion proof. It must also contaln pllot motor thermal sensors (which must be connected in the motor control).

Class II, Division 1: suitable equipment'must be "dust ignition proof" and use motor pilot sufface temperature llmiling thermal switches as in Class I.

Class ill, Division 1: suitable equipment need only bs totaliy enclosed, non ventilated.

Curtent Approvals for hazardous location pumps previously noted are by FM (Factory Mutual Research). FM Is officlally.llsted by OSHA (Occupational Safety \& Health Administralion), In the Fideral Register as a Nationally recognized testing laboratory (NRTL). It is in all regards equivalent to UL (Underwriters Laboratory).

Restrictions: The listed (X) pumps are not approved for "process pumping" where high concentrations of liquids (other than wastewater) are handled for process work, Iransfer, or recovery, The acceptable usage is for handiling waslewater (contaminated water, sewage, etc.) for the purposes of treatmenf, transfer, storage, or dilsposal.

No accessory equipment may be atlached to an approved pump unless it is specifically approved for the location or "intrinsically sata" (See NEC 500-2 for Intrinsic Safe requirements).

Explosion-proof Pumps

SECTION	PAGE
8	5
SUPERSEOES	$15 S U E D$
$4 / B 6$	$6 / 94$

WARNING: All NEC and local code requirements must be scrupulously observed when making an installation. Be certain thal giands and conduits where pump(s) or control whing/cable passes irom a hazardous location (wet pit, etc.) to electrical service, controls, or nonclasslifed area are sultably sealed agalnst passage of gases or liquids.

Aggressive Liquids: Depending on temperalure, pH , concentration, and their intrinslo reaclivity, certain contaminant chemicals (acids, alkalles, soivents; etc.) may have a delerlorating elfect on the equipment and pose a safely hazard to the Installation. Be careful to fully examine these circumstances with the end user or his representative and consult with ITT Flygt.

A number of alternative configurations or approaches are available which may make the equipment sultable in the presence of these materials: alternate elastomers, cable sheathing, special cable entries, elc.

Accessorles: Non-sparking bronze "Safe-Slide ${ }^{(1)}$ " installation/removal gulde accessories are available for all approved pumps. While not required by the Approval Authority they may be desired by local authoritles and do provide an extra margin of safety for particularly hazardous classified locations.

Cable: Flexlble cords or cables used in hazardoús locations must be of the NEC type "extra-hard usage" and be specifically approved/lested for the approved equipment (motor/pumps) whlch they will be used with. Nounapproved substlutions mavibe made withoutloss of oficial approval Cables supplied by Π Flygt and used with ITT Flygt electric submersible pumps are FM tested and approved for the hazardous locations listed for the pumps in the beginning of this Explosion-proof pumps section.

Toprotect against the damaging and unsate effects of very aggressive contaminants (fiquids, dissolved solids) in the wastewater, special cable entries are avallable which will allow pipe or slainless steel flex hose sheathing to be attached to protect the cable.

Special Exceptions for Hazardous Locations: It is possible in some circumstances to use standard pumps in what would normally be declared as hazardous locations. These approaches are supportad by varlous codes but may not be used if speciflcally disallowed by an Authorty Having Jurlsdiction.

Guaranteed Pump Submersion (GPS): Ifthe equipment Is so controlled that the llquld levalnever falls below a point 4 - 6 inches above the topmost point of the pump, then
standard non-approved pumps may be used. This is because the volume below a liquidsurfacels not consldered hazardous.

The maans for guaranteeing that a pump will always remain submergad during operation vary from one pari of the couniry io another. Consult IT Flygt for appropilate configurations.

Declassification: An examination of local/state administrative codes, NEC Chapter 5 ; and NFPA Standard 70 C and 496, shows that a hazardous location may be reduced in claseffleatlon from Division 1 to Divislon 2 or even to a nonhazardous condition through the use of suitable air purging and use of monitoring safaguards. This would then allow the instailation of standard pumping equipment.

This is a common practice in many parts of the country when the installation makes it practical. The approach has additlonal benelifs: purging not only removes any explosivel flammable gases, but also removes smothering or poisonous gases thus improving the personnel safety aspects of the location.

Mine Safety and Health Administration (MSHA)

Equlpment approved by MSHA (Permissible-sultabie for use in gassy mines) may not be used In any hazardous location covered by the NEC categones (Class i, II, or III) without written permission of the Authority Having Jurisdicilon.

Nor may equipment approved//lsted by FM or UL be used in a gassy mine withoul the written approval of MSHA.

$$
\stackrel{y}{2}
$$

PAGE	SECTION
16	10
SSUEO	SUPERSEDES
$4 / 86$	

ITT Fiygt Grip Eye System

The nomal method of lowering and ralsing a CP pump in and out of a lift stallon is by use of a chain or cable attached to the pump. The length of the chain or cable is dependent on the depth of the station. The average length would probathy be between 18 to 20 ft . and in certain cases may be much longer. In many cases, depeniding on the lifling device (usually a holst), the operator may have to take a second or third bite on the pump chaln in order to lift the pump clear of the station.

An added acceassory to the ITT Ffygt lirie is the pattented ITT Flygt Grip-Eye System which consists of 33 it of nifton line; a short tength of high tensile strength gavanieed chain and a forged "Grip-Eye" of wrought alloy steel.

The operation of this positive recovery system is as follows:
1.. Connect the small eye of the "grip eye to the end of the:hoist cable.
2. Slip the end of the ryton line throught the large eye of the:grip-aye: The nyton … \therefore line simply acts as a guide for the grip-eye on its way down to the short length of the pump lifting chain.
3. While keeping the myon line (guide fine) taut, proceed totower the grip-eye .- until it is.well positioned over the pump lifting chain.
4. Release the tension on the nyon guide line. The lifting chain will now take a position to become engaged in the grip-eye.
5. Gradually take up tension on the hoist cable and the grip-eye will make a positive grip on the pump lifting chain. Continue hoisting until the pump is clear of the station.

Caution: The Giap-Eyes may only be used with the corresponding special IT Fyg̀t Chain Sling Units.

Grip-Eyes are not warrantied if other chains are used.
\therefore. . Refer to the following:pages for pumpimodels:andicorrect assembly.

fig. 1
(Slandand) The eno ding of the Ctwin Slivy is slipped overtwe pumpliftingtuandle

FIG. 2
(Customet to surpply exití shackel A snacste can be strackle) A snacide can be
used in conpuncion mith the used in connericion with the
standaldangstrouldoriam. er choose nod to rernowe and replace pump harntle.

FIG. 3
(Slancard) This type (Slancara) This type conces inith a strackle as
partonthe CTwinSting for conrecting to pump fitting hanctle.

Povers

FASTENERS
SPECIFICATION \& DESIGN MANUAL
AC100 Plus'

AC'100 Plus ${ }^{\text {™ }}$ Epoxy Aerflate Atherive Anchoring System

PRODIIGIDESEDPIDM

The AC100 Pius epoxy arcyiate adhesive system is a ivio-component, structural adhesive whith is packaged in engineered plastic carijidges. II is used with either a manual, pneumath or power-operated Injection tool and proportionally miked through a statit-element mixing nozze. ALI00 pius has been vigorously tested to meet or exceed required stendards as on anchoring adheslve. This all-weather adhesive can be used effectively in temperatures as low as $-4^{\circ} \mathrm{F}\left(-2 D^{\circ} \mathrm{C}\right)$
ACIOD plus is deslgned for use in anthoring threaded tods, bolts, reinfordng bars, and smodth dowels into concete and masony base meterials. The system can alloo be used to anchor into hollow masonry maierials using rod and rebar whth screen tubes. The AC100 Pius athesive is a 100% solids, low odor, molsiture linsenstive formulation which does not contain volatile organic compounds (VO['s) and is fies of styrene and solvents.

- Heavy duriy anchoring such as rebar, threaded anchor rods, and threaded bolts in solid concrete, grout filled black, stone, etc
- Used in wet enviranmenis, a wide range of temperatures and vehenever solvert or shyrene fumes are not acceptable
- Anchoring with screen tubes in hollow block ar brich
- Repalt and setroftt projectis

- Lsted and approved to resist dead loads, live loads, and short-tern loads such as those resulting from wind or earthquake
- Superior dispensing speed and fast cure even in low temperatures
- Allweather material is ideal for coll and moderate envinonment applicaticns
- 100% sollds, syrrene free, anchoring mortar; juith no VOC's
- Avallable in five cartidge slzes to match project and application
- Non-flarnmable, does not contain hazardous methy-methacrylate like other "acyliti" fommulas
- Virtually odorless for indioor and outdors applications
- Meets the requirements of ASTM CBB), Types I ard N, Grade 3, Class A, B and C
- Optimal for use In diamond cored hoies
- suitable for dyy, damp or water-filled holes
- Mieets current building code and DOT repulrements
- High load capactities in concreie and masony
- Excellent chemical resistance
- Independenty tested and quatified so ASTM E1512 and AC5B Criteria, Induding crep resistance, freeze-thaw cyclling and simulated selismbecyind conditions

International Code Council, Evaluation Senice (ICC-E5) ESR-1 636
aty oi Los Angeles (COLA) Research Report LARR-25579
Miaml-Dade County Notlce oi Acceptance (NOA) O4-0820,02
Meets ASTM C8Bi and AA5HTO M235
Various North American Deparments of Transportation (DOi) - See whw.powers,com
(TH11
C5I Divisions: 03151-Concrete Anchoring, 04081-Masonry Anchorage and 05090-Metal
Fastenings, Adhesse anchoring s.siem shail be AC100 Plus es supplled by Powers Fasteners,
inc., New Rocheile, NY.

sEETION CONTENTS Page No.

General information..................... 9
Matental and installation
Sperfficatlons 2
Insfallation Guidelines 3
5teel Specifications 4
Pariormance Data \qquad
Derlgn Criteria 15
Ordering Information \qquad

Actoo Plus Coaxlad Cartridge

AC100 Plus Dual Cartridge

PACKAGING

Coaxlal Cartrldge
5.5 fi. oz. (160 mil or 9.9 (n3)

10 in. ox (295 ml or $i 8,0$ in in)
Dual (Sida-by-Side) Cartridge
8 解 oz (235 ml or 14.4 lm)
12 A or ($355 \mathrm{mfor} 21.6 \mathrm{fn}^{3}$)
30 fl. ox. (590 तl or $54.8 \mathrm{~m}^{3}$)
ANCHOR SIZE RANGE (TYP.)
$3 / 8^{2}$ bo $1-9 / 14^{2}$ diameter rod Na. 3 to No. 11 relnforing bat $3 / 8^{\circ}$ to $1-1 / 4^{\circ}$ smooth dowe bar $1 / 2^{\circ}$ to $3 / 4^{*}$ intermally threared inseris

SUITABLE RASE MATERIALS

Normal-weight Concate

Structural Ughtwelght Concrete
Gravted Concerte Masonfy
Hollow CMU
Brick Majony
Stone

Physical Properties of Adheslue

Shetillife	18 monthrs from date of manufacture
Storage Condlions	$14^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right)$ to $\mathrm{B} \mathrm{S}^{\mathrm{P}} \mathrm{F}\left(30^{\circ} \mathrm{C}\right)$
Injedion Temperature	-4F $\left(-20^{\circ} \mathrm{C}\right.$) or preater
Color	$\begin{aligned} & \text { Component A (Resla) -White } \\ & \text { Componem } \mathrm{B} \text { (Hardener) - Blad } \end{aligned}$
Mixing ratio	10:1 by wolume
Consistency	Unilorm, nan-sag gray morisi
Shone Hardness (A5710 D2240)	90
Compressive 5trangh (ASTh D 695)	10, 100 p5l, 7 days
Tensill Strength (ASTMD 63B)	2,100 psi
$\begin{aligned} & \text { Fexuial Strength } \\ & \langle\text { ASiMD } 790\} \end{aligned}$	3,670 ps
$\begin{aligned} & \text { Sant Shear Strength } \\ & \text { \|ASThD732\} } \end{aligned}$	4,590 pri
Water ábsorpilon (ASTMD 570)	Lers than 1% (0.119%)
$\begin{aligned} & \text { Bond Syength } \\ & \text { (ASTMC } \operatorname{BED}) \end{aligned}$	$\begin{aligned} & \text { 1,380 ps, } 2 \text { Day Cure } \\ & 1,760 \text { ps), } 2 \text { Day Cure } \end{aligned}$
$\begin{aligned} & \text { Shinlage } \\ & \text { (ASTMD 2566) } \end{aligned}$	0.004 info
$\begin{aligned} & \text { Hest Deflecion } \\ & \text { (ASTh D 648) } \end{aligned}$	1760 ${ }^{\text {a }}$ ($\left.0^{\circ} \mathrm{C}\right)$

Setting Times

Bare Material Temperatare	Maximum Gel TImer	$\begin{aligned} & \text { Minlmum } \\ & \text { Curing Tme } \end{aligned}$
-4P $\left(-20^{\circ} \mathrm{C}\right)$	12 halus	72 hous
$505[-15 . \square$	9 helis	2't hous
145 (-10 $\left.0^{\circ} \mathrm{C}\right)$	4 hours	12 hours
$23^{\circ} 5\left(-5^{\circ} \mathrm{C}\right)$	2 hours	5 houst
$32^{\circ} \times 10^{\circ} \mathrm{C}$	40 minules	4 hous
$41^{\circ} \mathrm{F}\left(5^{\circ} \mathrm{C}\right)$	20 minules	2 bours
$50^{\circ} \mathrm{F}\left(10^{\circ} \mathrm{C}\right)$	15 mhuter	
$59^{\circ} \mathrm{F}\left(15^{\circ} \mathrm{C}\right]$	10 minutes	45 minutes
$68^{5} 5\left(20^{2} \mathrm{C}\right)$	7 minules	30 minut
$85^{4} \mathrm{~F}$ (30 ${ }^{\circ} \mathrm{C}$	4 minutes	25 minutes
$104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$	2 minules	20 minates

2. The gel tine is the meximum ine duting whith the athetive can be tispensed Eelore it
 ale dre.

mstallation Specifications

Propaty		Rod Dlamater ${ }^{\text {d (}} \mathrm{In}$)						
		3/8	$1 / 2$	5/8	3/4	718	1	$11 / 4$
Asom $=$ Naminal ajea of hreaded rod (inchi)		0.71305	0, 1963	0.3068	0,4418	0.6013	0.7854	1.2272
Ae $=$ Yensile styess araa of roid incin')		0.0775	0.1419	0.2260	0.3345	0.4617	0.6057	0,9691
$\mathrm{dsm}_{\text {a }}=$ Nominal bit dameter (lnch)		7116	915	1V16	13/16	15/15 bt)	11/16	1378
$\begin{aligned} & T_{\text {mx }}=\begin{array}{c} \text { Nax fightering } \\ \text { torgue range (fi-Hss) } \end{array} \end{aligned}$		5-6	10.12	20.22	35.40	55-68	75.85	135-950
	$h_{1} \geq 8 \mathrm{~d}$	15.17	30-35	50-62	100-110	148-955	210.230	400-450

Propetty	Relnforeing Bar Slzes, d^{\prime}								
	No, 3	No. 4	$\mathrm{No,5}$	No. 5	N0. 7	HaB	No. 9	Hal 10	140.11
$\mathrm{d}^{\circ}=$ Nomlal bas damater (inch)	318	$1 / 2$	518	3/4	-718	1	$11 / 8$	1114	1318
$\mathrm{d}_{4}=$ Elilective anchol dimmeter (ind)	0.375	0.500	0.625	0.750	0.875	1.000	1.128	9.270	1,410
As = Nominal zea of felinforing bas [inch')	0.110	0.200	0.310	0.440	-0,600	0.790	1,000	1.270	1,560
	7196	$9 / 96$	11/16	718	-1	$11 / 8$	$11 / 4$	$11 / 2$	15/8

Nomencliature
$d=$ Diamale of $100 \mathrm{D} \times$ rebar
dor $=$ Dimeler of dind bir
$h=825$ malemal thidness The minhmur value of h should be 1.5 h $_{\text {, }}$
$h,=$ Mintrum erbeoinent deph
$1=$ Oysall lengh of rod or refan

- F Feture ind ${ }^{2}$ ness

Trau = Masmum thhtening trique (Oity passbe allay full ore)

Flygt Monitoring Devices ENM-10 Liquid Level Sensors

n-…
 Conirols : \quad :

The simplest possible method for levei coniroll A mechanical micro switch in a plastic casing, freely suspended at the desired height from its own cable. When the ilquid level reaches the regulator, the casing will tilt and the mechanical switch will close or break the clrcuit, thereby starting or stopping a pump or actuating an alarm device. No wear, no maintenancel Use in sewage pumping stations, for ground water and drainage pumping - in fact, for most level control applications - the ENM-10 is the ideal solution.

The regulator casing is made of polypropylene and the cable is sheathed with a special PVC compound. The plastic components are welded and screwed together adhesive is never used. Impurities and deposits will noi adhere to the smooth casing.

This level regulator is available in different versions, depending upon the medium in which it is to be used. The standard model can be obtained with 20, 43 or 66 feet of cable for liquids with specilic gravities between 0.95 and 1.10. For other specific gravities, the regulator is only
 available with 66 feet of cabie. The regulator can withstand ternperatures of $32^{\circ} \mathrm{F}$ to $140^{\circ} \mathrm{F}$.

When the level drops, the mioro switch is activaled....

pumping slops and the level begins to rise....

When it reacbes the highest pergaissible point, the second regulator reacts....

and pumping resumes.

Specific Gravity of Liquid	Cable Lenglh	$\begin{gathered} \text { ENM-10 } \\ \text { Part Number } \end{gathered}$	ENM-10 Sensor Specificatlons	
$0.65-0.80$	66^{\prime}	5828827	Min. oper lemp.	$32^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right)$
$0.80-0.95$	66^{\prime}	5828828	Max. oper. temp.	$140^{\circ} \mathrm{F}\left(60^{\circ} \mathrm{C}\right)$
0.95-1.10	20^{\prime}	5828829	Max. applied vollage	250VAC/30VDC
$\rightarrow 0.95-1.10$	43^{\prime}	5828830	Max, amperagé -	16A @ 250VAC
0.95-1.10	66'	5828831	Resistive load.	16A@ 250VAC
1.05-1.20	66^{\prime}	5828832		5A@30VDC
1.20-1.30	66^{\prime}	5828833	Induclive load-	4A@ 260VAC
1.40	66^{\prime}	5828834	Max. angular displacement	60°
1.50	66^{1}	5828835	Opelatting point - rising Operaling poinl - descending	

PART NO. 14-407129

Features:

- Plug in replacement for existing MiniCAS / FUS unit
- $120 \mathrm{VAC}, 24 \mathrm{VAC}$, or 24 VDC powered.
- Durable plastic enclosure bith flange for mounting on door of pump control enclosure
- Highly visible red LEDs for indication of Leakage and Temperature alarms
- Green LED for indication power is applied
- Temperature alarm reset mode select switch, for selection of Manual or Aalo reset modes
- Tenperature alarm reset push-button on front of cinit
- Inpul power transient protected
- Sensor input circuit transiene protected
- Sensor input cixcuit short cireuit protected
- Noise Filter on Sensor Tpput
- Sensor circuit steply voltage regulated to 12 VDC
- Detailed connection diagram on side of unit

ITT FLYGT OORPORATION
35 Nutmeg Drive
Trunbull, Connectiout 066i1
Phone (203) 380-4700
FAK (203) 380-4705

PART NO. 14407129

Speciffcations:

- Input Power: $120 \mathrm{VAC} \pm 10 \%, 7.0 \mathrm{VA}$ max $24 \mathrm{VAC}=10 \%, 3.5 \mathrm{VA}$ max $24 \mathrm{VDC} \pm 10 \%, 125 \mathrm{~mA}$ max
- Input Power Transient Protection: Metal Oxide Vaxistor
- Sensor Input Transient Protection: Metal Oxide Varistor
- Relay Contact Rating: 10A © 250 VAC
- Relay Confact Material: Silver Cadnuuna Oxide (AgCdO)
- Ambient Operating Temperature: $-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.+149^{\circ} \mathrm{F}\right)$
- Agency Approvals: OL 508, CAN/CSA (Pending)
- Alam fodicatom: Super Bright Red LED
- Power On lindicator: Green LED
- Enclosure: Blue Lexan (141R) or Noryl (PX9406)
- Faceplate Oycrtay: Silver Lexan with Black Text
- Side Label: Sitver Lexan with Black 'Text
- Sensor Citcuit Supply Voltage: Regulated 12 VDC $\pm 10 \%$,
- Weight 11.75 oz (334 grams)
- Temperature Alam Tip Point: Sensor Current $\leq 3 \mathrm{~mA} \pm 5 \%$
- Leak Alarm Trip Point: Sensor Cument $\geq 22 \mathrm{~mA} 5 \%$

ITT FLYGT
 CONTROL PANEL STORAGE RECOMMENDATIONS

The following procedure is recommended when a control panel is stored over extended periods of time.

- Since the moisture content of the air can be extremely high, it is recommended that the controls be stored in a controlled atmosphere.
- The cọrosion inhibitor should be replaced yearly
- Ensure the enclosure door is tightened.

Appendix I. Gravity Districts - REMOVED

Appendix J. Approved Landuse Plan

FLAMINGO CROSSINGS PD

LUP-16-04-147
FLAMINGO CROSSINGS BLVD \& WESTERN WAY
ORANGE COUNTY, FL

PERMITED USES			
1. Thoses uses Permitited within the $\mathrm{C}-1$ (Retrai Commerciat) Distict, and the following Special Exopption Use colleges and universties	RECREATION	as Requeste	
	Active and Pamsive recreational amentifies will be provided at a ratio of 2.5 Acrea per 1,000 residents, in accortanca with Section $38-1253$ (b) of the Orange County Code of Ordinances. Locatlons and types of amenities to se provided at time of Development Plis.		
		tunded my (150) imarsutemert	
Ptogramp Partictpantus for the durstion of their iniernitips of 3 -15 month is, and and on-stre operator's control, any remanining units may be lessed for a Wall Cheney Wortd Oporating Perricipant businessoes (Employees'). Residential unitis for Paricipants and Employeses shall be separated by buildng. There shall be no co-mingling of Paricipants and Employees within the same multh-amily buiding The developor (ar Disney) shall resport on an annual basis the number of buddings leased to Employess dunng the previocus yeerf, or partion of a previous year, and the number of buildings antacoitad to bo needed for Employeet in tho up-coming years (it is understood that during a given year, the occupancy forecast might be revised and the number of buildings deployed for the Employees may vary)	traffic data	entrunded by paiking. The perking arees wil be nagregited fom the buiding arees to 	
	Thip Gemernton Culculution		
	Lensuse If cose Size		аппи\%
		2 A wiver fom, Orange County Coce Sedion 38-1254(1) bo mindila minium PD 	- omil - come
			somer mecmer
	${ }_{4}^{4.808}$		
	2001200		3 -
	2,05		\%expelv
	HOOL DEM		
DEVELOPMENT STANDARDS	The applicant is working with the Orenge County School Diatrici to deterrines the public school impact of the proposed residentiel program.		
	1. Whater Waber, genitary semer, and reclaimed waber कervices shair be provided by Orange County Unilities. A detailod fiow analysia will be submided during the Master Utility Pian review procest	4. A wever fom Orange County Code Secion $38-1259$ (d) 0 alow a mamum biding storidefority (H0) liont	
Menimum Lot Size: 6,000 SQ FT			
	2. Devolopment within the preject ehel maintein minimum fre flows in accordance with Orange County requirements.	 	
Commercial: $\quad{ }_{30}^{50}$ Foed within 100 Feoot of Residenvial	3. Other servictas, such as cable and electrical wifl be provided in accondante whth the approprime territarial agreementa.		8
Minimum Builing Soblecks:	STORMWATER MANAGEMENT	trines	
	The Reedy Creek Improvernent District (RCID) has constructed and mantans a Mester Stomwater System for the entire RCID district, which includes the Flemingo Crossinge PD. Design and Maintanance of stormwater feailities will be in accordance with the interiocal Agreement between Orange County and RCID, excecuted on —— 2017.		
Croseings Blvel: From Westom Way:			-
		en whim axommodating mej jexign.	
Minimum Residenial Lixng Anembu: 500 Sort	Slommoater pond loctations will be delermined at PSP and the frial dezign with be submitted during the construction plan approval proceses.	etheot botween intemal lot ines witin the develponert in liou of prowing a landectape buller a rinimum of senel (7) fisel in widh	-
- See Whivera section for rotanted waviver. -* Maximum buibiling helght doess not indude arctinectural deeipn features that may extend beyond the top of the roof ine.	A totai of 32.76 atrea of Class I wedands is located an the West Parcel. The wettand arees within the West Parcel are subjeci to the following environmental permitt:		
PHASING	on Nowember is, 2015. modifad on Octiober 19, 2015.		
The propact will be conssucted in multple phases. Each phase will contain edequate infrastructura to stand on its own.		7. A wever from Orenge County Code Section 24-E(a)(3) to allow a Type C, opequetrd 	
OPEN SPACE \& IMPERVIOUS AREA (OVERALL PDI	Note: An Orange Counly Conservation Area Determination (CAD) for the subject watiand area muat be epproved prior to PSP of DP spproyil.		
Minimum Open Spaca Reavired:		寿	
	PARNME Tha multi-imily cominarcied uses will meet the pariding requitromentis of Orange County Land Dovelopment Code Articla Xl. On-atreet pariding locatied within intemal rights-or-way may be unad to meat the parting requitremants of reaidential andror commercial users.		
Individual tracts or phases may not meot the open space criteria, but the overal PD will meet the open uppace requirement. A meater Oper Spaca chan shat dee provisted on the firx PSP. With Updates added on esth subsequent PSP of CP			
		bo	amor Lemen
Moxinum Impervious Areatat Cowerege:Mulin-Finily: 30% (Buildinge onty) Commercial: $70 \%(3.0$ FAR)	sigmage Signege with the PD shat meet the roquremente of Orange County Land dovelopment Code Aricte II		
			6 of 6

Appendix K. Wholesale Meter Specification

ULTRA MAG

U|tratiet:
 Ultra Mag And SIGMAL CONVERTER

DESCRIPTION

MODELS UM06 AND UM08 FLANGED TUBE Wetre Mice meters are manufactured to the highest standard available for magmeters. They incorporate microprocessor technologyto offer verylow flows and broad range ability. The flanged end tube design permits use in a wide range of applications with up to 300 PSI working pressure. Flanged ends are:

- Steel AWWA Class "D" flat face flanges (150 PSI) for UM06
- Steel AWWA Class "F" raised face flanges (300 PSI) for UM08 (2", 3", and $\geq 14^{\prime \prime}$)
- Steel ANSI 300 lb . Raised Face Flanges for UM08 ($4^{\prime \prime}$ - $12^{\prime \prime}$)

The fabricated tube is stainless steel with steel or stainless steel flanges and is lined with UltraLiner ${ }^{\text {TM }}$, an NSF approved, fusion bonded epoxy material.

INSTALLATION is made similar to placing a short length of flanged end pipe in the line. The meter can be installed vertically, horizontally, or inclined on suction or discharge lines. The meter must have a full pipe of liquid for proper operation. Fluid must be grounded to the downstream flange of the sensor either via internal grounding electrodes (4-12") or using McCrometer 316 SS Grounding Rings. For best performance, grounding rings are recommended for all sizes. Any 90 or 45 degree elbows, valves, partially opened valves, etc. should not be placed closer than one pipe diameters upstream and zero pipe diameters downstream. All blending and chemical injection should be done early enough so the flow media is thoroughly mixed prior to entering the measurement area.

SIGNALCONVERTER:The signal converteristhe reporting, input and output control device for the sensor. The converter allows the measurements, functional programming, control of the sensor and data recording to be communicated through the display and inputs/outputs. The microprocessor-based signal converter has a curve-fitting algorithm to improve accuracy, dual 4-20mA analog outputs, an optional RS485 communication port, an 8 line graphical backlit LCD display with 3-key touch programming, anda rugged enclosure that meets IP67.In addition to a menu-driven self-diagnostic test mode, the converter continually monitors the microprocessor's functionality. The converter will output rate of flow and total volume. The converter also comes standard with password protection and many more features.

ISOLATED POWER AND SIGNAL: The power and signal between the converter and sensor are isolated and placed in separate cables giving superior resistance to electrical signal noise compared to single cable designs. An added benefit from the dual cable design is a maximum cable length of up to 500 ft .

OPTIONAL:

DC powered converter ($10-35 \mathrm{VDC}, 21 \mathrm{~W}$)
Meter mounted converter
Extended warranty
Hastelloy ${ }^{6}$ electrodes
ANSI or DIN flanges
Quick Connect cable fittings
Special lay lengths, including ISO standard lay lengths
Converter sun shield
Modbus Protocol RS485 converter; HART ${ }^{*}$ Converter; Profibus Converter (No Dual 4-20mA on HART \& Profibus); Smart Output" (Sensus or Itron compatible); Panel mount converter (Not CSA approved); Battery or battery-solar powered converter (Not CSA approved, $\pm 1 \%$ accuracy)

MODEL UM06 AND UM08
 Ultran Mag' electromagnetic flow meter
 150 PSI FLANGED TUBE METER, SIZES 2" thru 48" 300 PSI FLANGED TUBE METER, SIZES 2" thru 48"

SPECIFICATIONS

WARRANTY: 2 Years
ACCURACY TESTS: 5-point wet flow calibration of every complete flow tube with its signal converter. If desired, the tests can be witnessed by the customer. The McCrometer test facilities are traceable to the National Institute of Standards \& Technology. Uncertainty relative to flow is $\pm 0.15 \%$
ACCURACY: Plus or minus 0.5% of actual flow (battery powered is $\pm 1 \%$ of flow)
IMPORTANT NOTICE ON FLOW METER ACCURACY: The flow meter, the cable and the electronics are factory calibrated for accuracy as a single unit. Changing the cable length with the Splice Kit changes the accuracy of the meter and invalidates the calibration certificate.

REPEATABILITY: $\pm 0.05 \%$ or $\pm .0008 \mathrm{ft} / \mathrm{s}(\pm 0.25 \mathrm{~mm} / \mathrm{s})$, whichever is greater
HEAD LOSS: None. No obstruction in line and no moving parts
PRESSURE RANGE: 150 PSI maximum working pressure (UM06); 300 PSI maximum working pressure (UMO8)
TEMPERATURE RANGE: Sensor Operating: - 10 to $77^{\circ} \mathrm{C}$ (14 to $140^{\circ} \mathrm{F}$) Sensor Storage: - 15 to $77^{\circ} \mathrm{C}\left(5\right.$ to $140^{\circ} \mathrm{F}$) Electronics: Operating and storage temperature:
-4° to $140^{\circ} \mathrm{F}\left(-20^{\circ}\right.$ to $\left.60^{\circ} \mathrm{C}\right)$
VELOCITY RANGE: 2 to 32 FPS
BI-DIRECTIONAL FLOW: Forward and reverse flow indication and forward, reverse, net totalization are standard with all meters
CONDUCTIVITY: $5 \mu \mathrm{~s} / \mathrm{cm}$
LINER: UltraLiner NSF approved, fusion bonded epoxy
ELECTRODES: Type 316 stainless steel, others optional
POWER SUPPLY: AC: $100-240 \mathrm{VAC} / 45-66 \mathrm{~Hz}$ (20W/25VA), DC: $10-35 \mathrm{VDC}(21 \mathrm{~W})$, battery (four lithium D cell batteries), five-year estimated life, solar (5 W panel). $A C, D C$, battery, or battery \& solar must be specified at time of ordering.
OUTPUTS: Dual 4 -20mA Outputs (Not available for Profibus, HART, or battery converters): Galvanically isolated and fully programmable for zero and full scale ($0-22 \mathrm{~mA}$).
Four separate digital programmable outputs: open collector transistor usable for pulse, frequency, or alarm settings.

- Volumetric Pulse - Hardware Alarm
- Flow Rate (Frequency) . Empty Pipe
- Directional Indication - Range Indication
- High/Low Flow Alarms

SENSOR CABLE:
Standard: 25^{\prime} McCrometer supplied submersible cable with each remote mount unit.
Qptional: Up to 500 feet, or 50 feet max for battery powered.
Quick connect: Available in standard cable lengths: $25^{\prime \prime}, 50^{\prime}, 75^{\prime}, 100^{\prime}, 125^{\prime}$,
150', 175,200 , and 500^{\prime}. Custom cable lengths at additional cost.
CONVERTER/SENSOR SEPARATION: ≤ 500 feet; for longer lengths consult factory
EMPTY PIPE SENSING: Zero return when electrodes are uncovered
ALARMS: Programmable alarm outputs
DIGITAL TOTALIZER: Cubic Meter; Cubic Centimeter; Milliliter; Liter; Cubic Decimeter; Decaliter; Hectoliter; Cubic Inches; US Gallons; Imperial Gallons; Cubic Feet; Kilo Cubic Feet; Standard Barrel; Oil Barrel; US Kilogallon; Ten Thousands of Gallons; Imperial Kilogallon; Acre Feet; Megagallon; Imperial Megagalion; Hundred Cubic Feet, Megaliters
RATINGS: Metering Tube: NEMA 6P/IP68 with remote converter; submersible with a standard quick-connect cable to 6 ft . and optional strain relief at 30 ft . Die cast aluminum converter: IP67; Panel mount converter: IP65

CERTIFICATIONS:

- CE Certified (Converter only)
- Listed by CSA to 61010-1: Certified by C5A to UL 61010-1 and C5A C22.2 No.61010-1-04
- ISO 9001:2015 certified quality management system

ULTra Mac

MODEL UM06 AND UM08

ELECTROMAGNETIC FLOW METER

Converter Dimensions

4" to 12" Models Body Style
14+" Models Body Style

Pipe Size (Nominal)	Meter Pipe ID	$\begin{array}{\|c} \text { Flow Ranges GPM } \\ \text { Standard } \\ .2 \text { to } 32 \text { FPS } \\ \text { Min - Max } \end{array}$	DIMENSIONS (Lay Lengths)								
			A*		B	C		D	E		
			UM06	UM08		UM06	UM08			UM06	UM08
$2^{\text {n }}$	2.117	2-340	11.00	11.00	6.70	6.00	6.50	7.90	9.26	93	107
$3{ }^{\prime \prime}$	3.220	5-730	13.40	13.40	6.70	7.50	8.25	9.40	10.01	97	111
4"	3.720	8-1,140	Rec	d			10.00	n/a	8.06	78	108
$6^{\prime \prime}$	5.692	19-2,6\%30	Recla		r	\%	12.50	n/a	9.06	82	138
$8{ }^{\prime \prime}$	7.692	33-4,, 70	16.10	17.25	n/a	13.50	15.00	n/a	10.06	115	195
$10^{\prime \prime}$	9.682	52-7670	18.50	18.50	n/a	16.00	17.50	n/a	10.46	144	247
$12^{\prime \prime}$	11.682	74-11,180	19.70	19.70	n/a	19.00	20.50	n/a	12.31	193	342
$14^{\prime \prime}$	13.440	90-16,070	21.70	22.75	12.00	21.00	23.00	20.30	15.46	321	476
$16^{\prime \prime}$	15.440	118-20,900	23.60	25.25	14.20	23.50	25.50	21.10	16.21	390	645
18	17.44 U	IT 150-20,480	23.60	25.25	14.20	25.00	28.00	21.10	17.21	446	750
$20 "$	19.440	185-32,720	25.60	28.25	16.20	27.50	30.50	24.80	18.26	588	874
$24^{\prime \prime}$	23.440	270. 47,180	30.70	35.75	21.70	32.00	36.00	29.60	20.11	769	1,568
$30^{\prime \prime}$	29.190	420-78,62 16	Potabl	Water	6.50	38.75	43.00	35.90	23.26	1,261	2,317
36 "	35.190	610-105,93 Me			8.8.20	46.00	50.00	42.70	26.66	1,696	2,915
$42^{\prime \prime}$	41.190	830-144,370	48.05	**	32.10	52.75	**	48.35	29.99	**	**
$48^{\prime \prime}$	47.190	1,080-188,430	50.00	**	36.00	59.50	**	54.00	33.31	**	**

[^2]
Appendix L. RCID HGL Approval Letter

Machlus, Kimberly A

The wastewater intertonnect HGL is as foilows:

- Wastewater interconnect HGL - The propased manhole invert elevation out side of LS-91 is 103 feet

Please confirm RCID approval of the HGL information used in the short term models.
Thank you,

Kimberly Krutski Machlus
Project Director
Engineering, Design, and Project Management
$\square, 407.8064132 \square 814.360 .4982$
지
482 South Keller Road Orlando. FL 32810

Consider the environment. Please don't print this e-mal unless you really need to

Atkins

482 South Keller Road
Orlando, FL 32810-6101

The Atkins logo, 'Carbon Critical Design' and the straplifiè 'Plan Design Enable' are trademarks of Atkins Lid.

[^0]: Paul E Partlow, PE
 Senıor Engıneer

[^1]: Walt Disney Wortd West District Water, Wastewater and Reclaimed Water Master Utility Plan | Version 6.0| September 2018 Page $\mid 44$

[^2]: * Laying lengths for meters with ANSI Class 150 Flanges are equal to UM08 laying lengths
 ** Consult factory

